Time optimal trajectory planning of four bar mechanism using indirect approach

Amin Nikoobin*, Amir Kamal

Faculty of Mechanical Engineering, Semnan University, Semnan, Iran.
P.O.B: 351319111, Semnan, Iran, anikooabin@semnan.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 08 December 2015
Accepted 15 February 2016
Available Online 26 March 2016

Keywords:
Four Bar Mechanism
Time Optimal Trajectory Planning
Optimal Control
Indirect Method
Bounded Jerk

ABSTRACT

Time optimal trajectory planning of closed chain mechanisms has not been done by indirect method yet. In this paper, this problem is considered for a four bar mechanism and its solution is presented on the basis of the indirect solution of optimal control problem. To this end, the additional coordinates are omitted using the holonomic constraints, so the dynamic equation is obtained with respect to only one generalized coordinate. Then the necessary conditions for optimality are derived using Pontryagin’s minimum principle by considering the constraint on the applied torque. The obtained equations lead to a two-point boundary value problem (BVP) the solution of which is the optimum answer. Unlike the direct methods that result in approximate solution, indirect method leads to an exact solution. But the main challenge in indirect method is solving the BVP. Solving this problem is sensitive to the initial guess. This problem is much more severe for time optimal problem which has a high nonlinear answer.

In order to overcome this problem, another algorithm is presented to calculate the minimum time with bounded jerk. Finally, the simulation results show the performance of the proposed method in time optimal trajectory planning.

Please cite this article using:

بایان یک ایده انجام گرفته در مدارس تنظیم برای مدارس معمولی در کشور است. این ایده برای مدارس تئوری خاصی در تئوری و مورد بررسی قرار گرفته است. این ایده، با توجه به نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

۱. توصیف و مقدمه

در این مقاله، یک ایده جدید برای ارتقاء مدارس معرفی می‌شود. این ایده، بر اساس نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

۲. روش و تکنیک

این ایده با در نظر گرفتن نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

۳. نتایج

این ایده با در نظر گرفتن نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

۴. گزارش و بررسی

این ایده با در نظر گرفتن نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

۵. بیانیه و نتیجه‌گیری

این ایده با در نظر گرفتن نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

۶. منابع

این ایده با در نظر گرفتن نیازهای مدارس و روزگار عمومی، بهترین راه حل ممکن است. این ایده را می‌توان به عنوان یک ایده جدید برای مدارس معرفی کرد.

سپرینگ
2- استخراج معادله دینامیک مکانیک ماهیچه لینکی

در این بخش تخلیه سیستم‌انلکرا و نحوه استخراج معادلات دینامیکی به روش
لاگرانژ برای مکانیک ماهیچه لینکی ارائه می‌شود.

2-1- مدل‌سازی

1) شکل 1 مکانیک ماهیچه لینکی صفحه‌ی اول نشان می‌دهد.
با توجه به شکل، معادله‌های لحظه‌بسته در راستای محورهای x و y به صورت روابط (1) و (2) نوشته می‌شود.

\[L_2 \cos \alpha = L_0 - L_1 \cos \theta - L_2 \cos \phi \]
\[L_2 \sin \alpha = L_0 - L_1 \sin \theta - L_2 \sin \phi \] (1)
(2)

2) در اصل فیزیک هوتون‌پیوند سیستم می‌باشد که رابطه بین

\[\alpha(\theta, \phi) = \arctan \left(\frac{L_2 \sin \theta - L_1 \sin \phi}{L_0 - L_1 \cos \theta - L_2 \cos \phi} \right) \]
(3)

2-2- تحلیل سرعت

مشتق گری از معادلات (1) و (2) بر نتیجه

\[\frac{L_2 \sin \alpha - L_2 \sin \phi}{L_0 - L_1 \cos \theta - L_2 \cos \phi} = \frac{L_2 \sin \theta}{L_0 - L_1 \cos \theta - L_2 \cos \phi} \]
(4)

شکل 1 مشترک متونیک ماهیچه لینکی صفحه‌ی اول به صورت معادله (10) نشان می‌دهد.

\[L_2 \cos \alpha = L_0 - L_1 \cos \theta - L_2 \cos \phi \]
(10)

3) محاسبه انرژی جنبشی و پتانسیل

روش لاگرانژ روش شناخته شده و شاید کارآمد برای مدل‌سازی

سیستم‌های مکانیکی، به خصوص سیستم‌های مشترک از چند جرم می‌باشد.

\[\frac{L_2 \sin \theta}{L_0 - L_1 \cos \theta - L_2 \cos \phi} = \frac{L_2 \sin \alpha - L_2 \sin \phi}{L_0 - L_1 \cos \theta - L_2 \cos \phi} \]
(11)

\[\frac{L_2 \sin \theta}{L_0 - L_1 \cos \theta - L_2 \cos \phi} = \frac{L_2 \sin \alpha - L_2 \sin \phi}{L_0 - L_1 \cos \theta - L_2 \cos \phi} \]
(12)

* Simmechanic
* Boundary value problem for conditions (bvp4c)
* MATLAB
* Holonomic constraints
از این روش برای استخراج معادله دینامیک مکانیزم استفاده می‌شود. با بسته‌ی آردن ارزی پیش‌بینی کننده کلرولین می‌شود.

معادله (13) تعیین می‌شود.

\[T = T_1 + T_2 + T_3 \]

(13)

ارزی پیش‌بینی کننده کلرولین به صورت رابطه (14) تعیین می‌شود.

\[T_1 = \frac{1}{2}(m_1 ||v_{c1}||^2 + L_1 \dot{\theta}_1^2) \]

\[T_2 = \frac{1}{2}(m_2 ||v_{c2}||^2 + L_2 \dot{\theta}_2^2) \]

\[T_3 = \frac{1}{2}(m_3 ||v_{c3}||^2 + L_3 \dot{\phi}_3^2) \]

(14)

مربع سرعت مرکز لبه لینکه ارکیده طبق رابطه (15) بدست می‌آید.

\[||v_{c1}||^2 = L_1 c_1^2 \dot{\theta}_1^2 \]

\[||v_{c2}||^2 = L_2 c_2^2 \dot{\theta}_2^2 + 2L_1 L_2 \cos(\theta - \alpha) \dot{\theta}_1 \dot{\theta}_2 \]

\[||v_{c3}||^2 = L_3 c_3^2 \dot{\phi}_3^2 \]

(15)

به‌این‌ها لینکی مانند لینکی به‌این‌ها لینکی

محور مرکز جرم آن L1، L2، L3 مانند مکانیزم گاز طبق معادله (16) به‌این‌ها لینکی.

\[V = V_1 + V_2 + V_3 \]

(16)

ارزی پیش‌بینی کننده کلرولین به صورت رابطه (17) تعیین می‌شود.

\[V_1 = m_1 g y_1 \]

\[V_2 = m_2 g y_2 \]

\[V_3 = m_3 g y_3 \]

(17)

که شباهت گرانشی می‌باشد. مختصات مرکز جرم لینکه ارکیده طبق رابطه (18) می‌باشد.

\[y_{c1} = L_1 \cos \theta \]

\[y_{c2} = L_2 \sin \theta + L_2 \sin \alpha \]

\[y_{c3} = L_3 \sin \phi \]

(18)

کلرولین از تفاعل آنرژی مکانیکی و ارکیده پیش‌بینی بدست می‌آید.

\[L = T - V \]

(19)

با جایگزین کردن ارزی پیش‌بینی و پیش‌بینی در معادله (19) کلرولین طبق رابطه (20) بدست می‌آید.

\[L = \frac{1}{2} \left((m_1 L_1 c_1^2 + L_1^2 + m_2 L_2^2) \dot{\theta}_1^2 + (m_2 L_2 c_2^2 + L_2^2 + m_3 L_3^2) \dot{\phi}_3^2 \right) \]

\[+ m_1 L_1 \cos(\theta - \alpha) \dot{\theta}_1 \dot{\phi}_3 + (m_1 g L_1 c_1 + m_2 g L_2 c_2 + m_3 g L_3 c_3) \sin \phi \]

(20)

4-2- استخراج معادله حرکت برای مکانیزم چپ‌ایان چرخ لینکی

بر اساس روش کلرولین، با انتسابه به عناوین مختصات دومین یافته، با استخراج از کلرولین بدست آمده دربخش قبل، مدل‌های حرکت مکانیزم از رابطه (21) بدست می‌آید.

\[\frac{dL}{dt} - \frac{dL}{d\bar{P}} \times \frac{d\bar{P}}{dt} = 0 \]

(21)

طبق رابطه (8) و (9)، راوهی بر حسب \(\theta \) و راوهی بر حسب \(\phi \) بر دو اسکری روش کلرولین، با انتسابه به عناوین مختصات دومین یافته، با استخراج از کلرولین بدست آمده دربخش قبل، مدل‌های حرکت مکانیزم از رابطه (22) بدست می‌آید.

\[\frac{dL}{d\bar{P}} = \frac{dL}{d\theta} + \frac{dL}{d\phi} \times \frac{d\phi}{d\bar{P}} \]

(22)
با یاد همیلتونی را می‌شیم که به عبارت دیگر رابطه (40) باشد:
\[
B_{8} = L_{0}^{2} + L_{1}^{2} - L_{2}^{2} + k_{3}^{2}
\]
\[
B_{9} = 2L_{0}L_{1}
\]
\[
B_{10} = 2L_{1}L_{2}
\]
با توجه به روابط (8) و (9)، معادله (25) و (26) به صورت
\[
G = G(\theta)
\]
\[
M = M(\theta)
\]
کوچک‌ترین نیروهای عمود به طول‌فک بدون قرار نظر شده است.

3-استرخاک شرایط لازم بهینه

برای پایان آلاینده کنترل بهینه، در این قسمت از این معادله دینامیکی سیستم به فرم قائل
\[
\begin{bmatrix}
\dot{x}_{1} \\
\dot{x}_{2}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial H}{\partial \theta} - \frac{\partial \psi}{\partial \theta} \\
\frac{\partial H}{\partial \theta}
\end{bmatrix}
\]
\[
F = \left[\begin{array}{c}
(\dot{x}_{1} - \dot{x}_{2}) \\
\dot{x}_{2}
\end{array} \right]
\]
حال سالته طراحی مسری بهینه برای مکانیزم جهش‌بکاری را می‌توانیم
\[
\mathbf{U} = U \leq x_{1} \leq x_{2} < U^{+}
\]
\[
H = L + \psi \dot{\theta}^{2}
\]
با یاد همیلتونی را می‌شیم که به عبارت دیگر رابطه (40) باشد:
\[
B_{8} = L_{0}^{2} + L_{1}^{2} - L_{2}^{2} + k_{3}^{2}
\]
\[
B_{9} = 2L_{0}L_{1}
\]
\[
B_{10} = 2L_{1}L_{2}
\]
با توجه به روابط (8) و (9)، معادله (25) و (26) به صورت
\[
G = G(\theta)
\]
\[
M = M(\theta)
\]
کوچک‌ترین نیروهای عمود به طول‌فک بدون قرار نظر شده است.

4-محاسبه زمان کنی

بندید آوردن می‌شیم که به مکانیزم توان بی‌سیار پرکاربرد در علم رایانکی می‌باشد
\[
B_{8} = L_{0}^{2} + L_{1}^{2} - L_{2}^{2} + k_{3}^{2}
\]
\[
B_{9} = 2L_{0}L_{1}
\]
\[
B_{10} = 2L_{1}L_{2}
\]
با توجه به روابط (8) و (9)، معادله (25) و (26) به صورت
\[
G = G(\theta)
\]
\[
M = M(\theta)
\]
کوچک‌ترین نیروهای عمود به طول‌فک بدون قرار نظر شده است.

5-محاسبه زمان کنی

بندید آوردن می‌شیم که به مکانیزم توان بی‌سیار پرکاربرد در علم رایانکی می‌باشد
\[
B_{8} = L_{0}^{2} + L_{1}^{2} - L_{2}^{2} + k_{3}^{2}
\]
\[
B_{9} = 2L_{0}L_{1}
\]
\[
B_{10} = 2L_{1}L_{2}
\]
با توجه به روابط (8) و (9)، معادله (25) و (26) به صورت
\[
G = G(\theta)
\]
\[
M = M(\theta)
\]
کوچک‌ترین نیروهای عمود به طول‌فک بدون قرار نظر شده است.
برقراری آن را بیان می‌کند که نرمال مدل تعمیم‌یافته نمایشگر حضور را راه‌اندازی می‌کند که هنگام مشاهده کرد که در صف تقریب مقدارهای افزایشی برآورد شده بر این رابطه‌ها تغییر می‌کند.

\[
\begin{align*}
\Phi^* &= \frac{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u}{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u} \\
\end{align*}
\]

\(\Phi^*\) نسبت به هر رنگ‌بندی لازم بود که مشاهده شود. برای بررسی \(\Phi^*\) نتایج تحقیق می‌کنند که هنگام مشاهده کرد که در صف تقریب مقدارهای افزایشی برآورد شده بر این رابطه‌ها تغییر می‌کند.

\[
\begin{align*}
\Phi^* &= \frac{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u}{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u} \\
\end{align*}
\]

\(\Phi^*\) نسبت به هر رنگ‌بندی لازم بود که مشاهده شود. برای بررسی \(\Phi^*\) نتایج تحقیق می‌کنند که هنگام مشاهده کرد که در صف تقریب مقدارهای افزایشی برآورد شده بر این رابطه‌ها تغییر می‌کند.

\[
\begin{align*}
\Phi^* &= \frac{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u}{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u} \\
\end{align*}
\]

\(\Phi^*\) نسبت به هر رنگ‌بندی لازم بود که مشاهده شود. برای بررسی \(\Phi^*\) نتایج تحقیق می‌کنند که هنگام مشاهده کرد که در صف تقریب مقدارهای افزایشی برآورد شده بر این رابطه‌ها تغییر می‌کند.

\[
\begin{align*}
\Phi^* &= \frac{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u}{\sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u - \sum_{r=1}^{R} x_r^* M(x_r^*)^{-1} u} \\
\end{align*}
\]

\(\Phi^*\) نسبت به هر رنگ‌بندی لازم بود که مشاهده شود. برای بررسی \(\Phi^*\) نتایج تحقیق می‌کنند که هنگام مشاهده کرد که در صف تقریب مقدارهای افزایشی برآورد شده بر این رابطه‌ها تغییر می‌کند.
6-شیب‌سازی مکانیزم موازی چهار لینکی صفحه‌ای

جدول 1 پارامترهای معادلات دینامیکی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>لینک 1</th>
<th>لینک 2</th>
<th>لینک 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول</td>
<td>2.5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>جرم</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ضریب میکس</td>
<td>0.5208</td>
<td>1.3333</td>
<td>0.0833</td>
</tr>
<tr>
<td>مان‌انریز</td>
<td>1.2649</td>
<td>0.5335</td>
<td>1.5708</td>
</tr>
<tr>
<td>زاویه اولیه</td>
<td>0.9582</td>
<td>0.5368</td>
<td>6.2832</td>
</tr>
<tr>
<td>سرعت اولیه</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>سرعت گیرش</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
انجام می‌گیرد. مرحله به مرحله از τ به اندازه 0.1 s شروع کرده و از آنجا که این زمان کمتر از زمان کمی می‌باشد، پایداری در داده‌ها داشته و مسیر مدار ϕ به دور تا به حد نهایی زمان بهینه با دقت 0.0001 در مرحله سیزدهم برابر با 0.49868 می‌باشد.

میزان t_f شتاب و جرک مطلق به ترتیب در شکل‌های 7 و 8 نشان داده شده است. در شکل 9 نشان داده شده است. شتاب در زمان حدود $0.85t_f$ در جهت همان بوده که در جهت مشابه آن شکل 10 دیده می‌شود و نهایتاً در کاهش $0.00132s$ کاهش می‌یابد. جرک ماکزیمم از 300 به 900 افزایش می‌یابد. به این شکل می‌تواند با نزدیکی شدن به زمان بهینه مطلوب، مقدار ماکزیمم جرک به سمت پیشی‌گیری سیستم بیشتر می‌گردد.

شکل 11 نشان می‌دهد که شتاب و جرک در زمان همان با در شکل 11 نشان داده می‌شود به زمان بهینه $0.49868s$ مطلوب کننده گشتاور کاملاً حالت مالی و بایان به‌نگ را با آن می‌کند.

![Fig. 8 Angular velocity of fist joint with respect to time](image1)

شکل 8 سرعت زاویه‌ای مفصل اول بر حسب زمان

![Fig. 9 Angular acceleration of fist joint with respect to time](image2)

شکل 9 شتاب زاویه‌ای مفصل اول بر حسب زمان

![Fig. 10 Jerk of first joint with respect to time](image3)

شکل 10 جرک مفصل اول بر حسب زمان

![Fig. 6 Motion time in each iterations](image4)

شکل 6 زمان حرکت به ده تکرار

![Fig. 7 Angular position of first joint with respect to time](image5)

شکل 7 موقعیت زاویه‌ای مفصل اول بر حسب زمان

حسنه‌کودکی مدیری، جلد ۱۳، صفحه ۱۶، شماره ۳، ۳۶۰
برای مکانیزم چهار لینکی محاسبه می‌شود کلیه پارامترهای فیزیکی شبه حالت قبل در جدول بیان شده است. شرایط زیر نیز مورد حالت قبل می‌باشد. بهترین مقدار جرک برای با $	heta = 150$ راد/ ث منجر به کاهش پرداختن J_k به مقدار 0.5132. سپس سوالات مربوط به حالت قبل به حالت بعد می‌گردد. مانند مورد فوق، در حالت قبل نیز نمودار از حالت بیشتر از حالت قبل محدود گرجهای دنده برای بهترین طبقه‌بندی می‌تواند با $	heta = 150$ راد/ ث منجر به کاهش پرداختن J_k به مقدار برای هر یک از حالت قبل و حالت بعد در مجموع می‌تواند بهترین حالت قبل یا حالت بعد است.}

\[\text{PreSol} = [0, 0, 0, 0], \quad t_f = 1 s, \quad e = 0.11, \]

\[\text{ed} = 5 J_k \max = 150 \text{ rad/ s} \]

در نظر گرفتن می‌شود در شکل 12، میانگین طبیعی شده در نظر گرفتن 3 میانگین طبیعی شده است. مقدار اصلی در حالت قبل اکتشاف پایداری شده است. بهترین مقدار جرک برای با $	heta = 150$ راد/ ث منجر به کاهش پرداختن J_k به مقدار 0.5132. سپس سوالات مربوط به حالت قبل به حالت بعد می‌گردد. مانند مورد فوق، در حالت قبل نیز نمودار از حالت بیشتر از حالت قبل محدود گرجهای دنده برای بهترین طبقه‌بندی می‌تواند بهترین حالت قبل یا حالت بعد است.
Fig. 15 Angular acceleration of first joint with respect to time

Fig. 16 Jerk of first joint with respect to time

Fig. 17 Optimal torque of first joint with respect to time

The image contains graphs and tables related to the dynamics of a robotic joint, specifically focusing on angular acceleration and jerk. The text appears to be discussing the optimization of torque for a robotic arm, with equations and plots showing the optimal torque values over time.

The graphs and tables are used to visualize the performance of the robotic joint under different conditions, highlighting the effectiveness of the optimization process. The equations and code snippets seem to be part of a simulation or computational model to analyze the behavior of the joint under various torque inputs.

The plots and data points are likely generated from simulations or experimental data, providing insights into the motion and control strategies for robotic joints in real-world applications.