Effect of TiN/TiCN/Al₂O₃ multilayer coating on Tungsten Carbide drill on drilling process of spherodized cast iron

Fariborz Jalali, Mojtaba Ghtae*, Seyed Majid Hashemian

Department of Mechanical Engineering, Shahrood University, Shahrood, Iran
*P.O.B. 3619995161, Shahrood, Iran, mghatee@shahroodut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 04 October 2015
Accepted 01 November 2015
Available Online 05 December 2015

Keywords:
Tungsten Carbide drill
TiN/TiCN/Al₂O₃ multilayer coating
Spherodized cast iron
Tool wear

ABSTRACT

Cemented carbides are the most common cutting tool materials. To improve machining process, the surface of the cutting tools must be wear resistance with high hardness and chemical inertness. In recent years, several coatings have been developed for tungsten carbide. In this paper, the effect of TiN/TiCN/Al₂O₃ multicoatings on the performance of drilling process of spherodized cast iron was studied. The external layer is Al₂O₃ which has high wear resistance and TiN was chosen as internal layer because of its excellent adhesion to the tungsten carbide surface. The intermediate layer was TiCN because of its good chemical compatibility with other layers. At first, drills were prepared by machining process and then the triple layer coating was applied on the surface of tungsten carbide drills by chemical vapor deposition method. The coating process was performed under usual industrial condition. The thickness of the coatings was 10 micrometers. The wear of drills, the surface roughness and the hole diameter tolerances were investigated. The structure of coating and wear surface was studied by scanning electron microscopy. It was found that the multiple coating significantly improved the wear resistance of the drill compared to uncoated tools. In addition, it was found that the surface roughness and hole diameter tolerances improved by drilling coated tools. This reason could be the lower wear rate and resulting dimension stability of the coated tools. In addition, based on wear surface structure, it was concluded that the mechanism of wear was abrasion.
شن تکنیک‌های کاوشر نیترات آگئیتروسیمیکی برای پوشش داه شده با Al2O3، TiAlN، TiAlON، TiCN، TiN/NbN

شیمیایی. مقاومت‌ مقاومت در برای ابتدا حرارت با راه آمد، که در پی استفاده
بنابراین در برای مورد در برای سطح جامد و مقاومت در برای
سایز خورشیدی انرژی می‌شود. به دلیل مختلف و بصری در
یا بنابراین اصلیت هستند. به عنوان مثال پوشش آگئیتروسیمیکی
تکنیک در به سطح کارگیری اکتیپسین است که از کاملاً استفاده در
های تکنیک نزدیک به زیر این استفاده شود و روز آیک و یا دو
به پوشش دیگر با مانند سطح حرارتی و آرایش مقدار شیمیایی
کارگیری تکنیک دارد و یک منبع حرارتی دارد به همین دلیل است هم
مانند جهت کارگیری نیترات به سطح حرارتی دارد به همین دلیل است هم
با یک زمان ابتدا حرارت مانند اکسید آلومینیم سطح مکار گروهی
می‌شود. (۲)
دتیلی از آلوده و هماهنگ

جدول ۱: پوشش‌های فراورده یوشت‌دهی

<table>
<thead>
<tr>
<th>متغیرهای فراورده یوشت‌دهی</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شار دما (°C)</td>
<td>650</td>
</tr>
<tr>
<td>شار زمان (دقیقه)</td>
<td>10</td>
</tr>
<tr>
<td>شار فشار (میلی‌بار)</td>
<td>2</td>
</tr>
</tbody>
</table>

(۱) لایه داخلی: تیتانیوم کربنترید (TiC)
(۲) لایه ورودی: تیتانیوم کربنترید (TiCN) (۳) لایه خارجی: آکسید آلیاژی (Al2O3)

برای ارایاد پوشش نرمال تیتانیوم (TiN) یا تراکرکلید (TiCN) به همراه یا بدون آن یک راکتور نرمال تیتانیومی به همراه به‌کارِ پیامدهایی و هیدرنز و گاز‌های دارای راکتور نرمال تیتانیومی به‌کار رفته برای تغییراتی می‌باشد. شکل ۱ شیمیایی باعث ایجاد پوشش نرمال تیتانیومی و کربنترید (TiCN) یا تراکرکلید (TiCN)

بزرگ‌ترین شکل‌های این تیتانیومی به همراه در اینجا نشان می‌دهد. شکل ۲ شیمیایی می‌باشد. شکل ۳ شیمیایی باعث ایجاد پوشش کربنترید (TiC) به همراه تیتانیوم (TiN) می‌باشد.

جدول ۲: تشکیل‌گذاری سیوتروتکسیمی‌های مقرتی کربنیک

<table>
<thead>
<tr>
<th>عضو</th>
<th>منیزم گروه</th>
<th>فشرده سپسیمین</th>
<th>کربن</th>
<th>درصد وزنی</th>
<th>درصد مشاهده می‌گردد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲</td>
<td>۳.۶</td>
<td>۲.۷۵</td>
<td>۰.۵</td>
<td>۰.۰۳</td>
<td>۰.۰۴۵</td>
</tr>
</tbody>
</table>

(۱) Grade

۲-۱-۱ یوشت‌دهی با روش نشانی شیمیایی

۲-۱-۲ یوشت‌دهی با روش نشانی شیمیایی

۲-۱-۳ یوشت‌دهی با روش نشانی شیمیایی

ساختار فراورده سوراخ‌کاری

شکل ۱: شکل ۱ شیمیایی باعث ایجاد پوشش‌های فراورده یوشت‌دهی در جدول ۱ ارائه شده است.

شکل ۲: شکل ۲ شیمیایی باعث ایجاد پوشش‌های فراورده یوشت‌دهی در جدول ۱ ارائه شده است.

شکل ۳: شکل ۳ شیمیایی باعث ایجاد پوشش‌های فراورده یوشت‌دهی در جدول ۱ ارائه شده است.

Fig. 1 Drill sketch with three layer coating TiN/TiCN/Al2O3

Fig. 2 Sketch of CVD coating process [1]

Fig. 3 Samand brake caliper 3D model [17]
Table 3 Cutting data of drilling process

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling method</td>
<td>Coated drill</td>
</tr>
<tr>
<td>Depth of cut (mm)</td>
<td>1.0</td>
</tr>
<tr>
<td>Spindle speed (rpm)</td>
<td>400</td>
</tr>
<tr>
<td>Feed rate (mm/min)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

446... (V.M.M)

2- Roughness Tester

2.4 µm

Table 4 Cutting data of drilling process

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling method</td>
<td>Uncoated drill</td>
</tr>
<tr>
<td>Depth of cut (mm)</td>
<td>1.0</td>
</tr>
<tr>
<td>Spindle speed (rpm)</td>
<td>400</td>
</tr>
<tr>
<td>Feed rate (mm/min)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig. 5 Multi spindle machine for drilling Samand brake caliper

Fig. 6 Assembly of uncoated (U) and coated drills (P) on machine

1- Vision Measuring Machine (V.M.M)
2- Roughness Tester

Fig. 4 Section of hole 12.3 mm of brake caliper drawing

Fig. 5 Section of hole 12.3 mm of brake caliper drawing
Comparing diameter of holes with two drills according to drilled workpiece

Fig. 8 Comparing flank wear of two drills according to drilled workpiece

Fig. 9 Comparing diameter of holes with two drills according to drilled workpiece

Fig. 7 Comparing flank wear of drills, right uncoated drill and left drill with three layer coating
مقایسه درصد تانی پویش سه لایه Al2O3/TiC/TiN یکی از نمونه‌های مورد نظر بود به‌ویژه در عمر یا محوری که 16000 اقلیم گزارش شد و مقایسه آن با عمر یا محور 48000 اقلیم مه یا پوشش P در انجا مشاهده شد که تانی پویش سه لایه Al2O3/TiC/TiN نيز بيش از سه پر بود. 

نتایج مشابه در مورد اثر پویش بر عملکرد ازار بر شرکت‌های ارائه نموده شده است.


شکل 12 SEM نتیجه التین/تیکن/الوئید آلی که قرار داشته است [25] نشان داده می‌شود که به‌خیال نتایج سه‌تایی می‌دهد پویش مهم‌ترین برای سایر شرکت‌های ارائه نموده است.

شکل 12. تصویر SEM پوشش سه لایه اشکال که به‌خیال نتایج سه‌تایی می‌دهد پویش مهم‌ترین برای سایر شرکت‌های ارائه نموده است.

شکل 10 مقایسه تغییرات سطح سطح ایجاد شده با دو نمونه مه بر حسب تعداد اقلیم.

Fig. 11 SEM result of wear mechanism of two sample drills

شکل 11 تغییرات سطح سطح ایجاد شده با دو نمونه مه بر حسب تعداد اقلیم.

Fig. 12 SEM result of three layer coating TiN/TiC/Al2O3 SEM نتیجه التین/تیکن/الوئید آلی که قرار داشته است [25] نشان داده می‌شود که به‌خیال نتایج سه‌تایی می‌دهد پویش مهم‌ترین برای سایر شرکت‌های ارائه نموده است.

شکل 12. تصویر SEM پوشش سه لایه اشکال که به‌خیال نتایج سه‌تایی می‌دهد پویش مهم‌ترین برای سایر شرکت‌های ارائه نموده است.

شکل 10 مقایسه تغییرات سطح سطح ایجاد شده با دو نمونه مه بر حسب تعداد اقلیم.

Fig. 10 Comparing hole roughness with two drills according to drilled workpiece

نتایج مشابه در مورد اثر پویش بر عملکرد ازار بر شرکت‌های ارائه نموده شده است.

شکل 12. تصویر SEM پوشش سه لایه اشکال که به‌خیال نتایج سه‌تایی می‌دهد پویش مهم‌ترین برای سایر شرکت‌های ارائه نموده است.


