Thermal buckling of functionally graded carbon nanotube-reinforced composite conical shells

Jalal Torabi, Majid Bazdid-Vahdati, Reza Ansari Kalkhani

Department of Mechanical Engineering, Guilan University, Rasht, Iran
* P.O.B. 37556, Rasht, Iran, r_ansari@guilan.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 09 June 2015
Accepted 25 July 2015
Available Online 09 September 2015

Keywords:
Thermal buckling analysis
Conical shell
Functionally graded carbon nanotube reinforced composite
generalized differential quadrature
Periodic differential operators

ABSTRACT

In the present study, thermal buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) conical shells is presented. The effective material properties of FG-CNTRCs are determined using the extended rule of mixture. By employing the Hamilton’s principle and based on first-order shear deformation theory and Donnell strain-displacement relations, the governing equations are obtained. The membrane solution of linear equilibrium equations is considered to obtain the pre-buckling force resultants. Using the generalized differential quadrature method in axial direction and periodic differential operators in circumferential direction, the stability equations are discretized and the critical buckling temperature difference of shell is obtained. The accuracy of the present work is first validated by the results given in the literature and then the impacts of involved parameters such as volume fractions and types of distributions of carbon nanotubes, boundary conditions and geometrical parameters on thermal buckling of functionally graded nanocomposite conical shell are investigated. The results indicate that the values of volume fractions and types of distributions of carbon nanotubes along the thickness direction play an important role on thermal instability of FG-CNTRC conical shells.

Please cite this article using:
11- Generalized finite difference
12- Shock loading
13- Improved perturbation technique
14- Mindlin

Transformation
Moving
Mesh

Mindlin
Improved
perturbation
technique

Carbon
nanotube-reinforced

d confirms that the new method
is more accurate and efficient than
the existing methods.
2- خواص مکانیکی کامپوزیت‌های نفوذ‌شده با انواع لوله‌های کریستالی

کریستال مرحله اولیه

ماده نانوکامپوزیت به صورت ترکیبی از لوله‌های کریستالی نیکلاسیت به عنوان تغییر مناسب و بسیاری از نیروی ایزوتروپی فرض است توزیع می‌شود. کریستال در راستای خاصی به صورت یکدیگر و فاقدی به نظر هدف است مکانیکی مناسب مولکولی نانوکامپوزیت‌ها با استفاده از معادله

مکانیکی منطقی پیش‌بینی می‌شود که از آن جمله می‌توان به مدل موری-ون-کریستالی ترکیبی استفاده. در این فرمول ترکیبی مهم‌ترین مدل نانوکامپوزیت به صورت روابط (1-3) می‌باید.

\[
E_{11} = \eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
E_{22} = \frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
G_{12} = \frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

3- روابط حاکم

یک پیش‌بینی سابقه شده در نانوکامپوزیت‌های هدفمند را با شکل کوچک یک رشته در طول ل غیربی‌ستار تدریجی که در شکل 1 می‌باشد. شکل بزرگ و طول ل غیربی‌ستار باید با روش طراحی کرایه در توجه به نظریه مکانیکی منطقی پیش‌بینی می‌شود که از آن جمله می‌توان به مدل موری-ون-کریستالی ترکیبی استفاده. در این فرمول ترکیبی مهم‌ترین مدل نانوکامپوزیت به صورت روابط (1-3) می‌باید.

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]

\[
V(x, y, z, t) = v(x, y, z, t) + z \frac{q(x, y, z)}{\rho}
\]

\[
W(x, y, z, t) = w(x, y, z, t)
\]

\[
\eta_1 V_{c1} E_{11} + V_m E_m
\]

\[
\frac{V_m E_m}{1 - \nu_{12}} + E_m
\]

\[
\frac{V_m G_m}{1 - 2\nu_{12}} + G_m
\]

\[
U(x, y, z, t) = u(x, y, z, t) + z \frac{p(x, y, z)}{\rho}
\]
در توجه منهج‌های نیرو و مانند مطلق رابطه (19) و (20) بایان می‌شود:

\[
\begin{bmatrix}
N_x \\
N_y \\
N_{xy}
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} & 0 \\
A_{12} & A_{22} & 0 \\
0 & 0 & B_{0}
\end{bmatrix} \begin{bmatrix}
B_{11} \\
B_{12} \\
B_{22}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
B_{0}
\end{bmatrix}
\]

\[
\begin{bmatrix}
M_x \\
M_y \\
M_{xy}
\end{bmatrix} = \begin{bmatrix}
B_{11} & B_{12} & 0 \\
0 & B_{22} & 0 \\
0 & 0 & B_{0}
\end{bmatrix} \begin{bmatrix}
D_{11} \\
D_{12} \\
D_{22}
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
B_{0}
\end{bmatrix}
\]

(20)

\[
\{Q_{yz}\} = k_e \begin{bmatrix}
A_{14} & A_{15} & 0 \\
A_{15} & A_{55} & 0 \\
0 & 0 & A_{55}
\end{bmatrix} \{Y_{yz}\}
\]

(21)

که در رابطه (21)، k_y بانگدار ضریب اصلاح بریشی برای کشش مختصاتی و دیگر آن برای A_{ij} رابطه (20) در نظر گرفته شده‌است که مختصاتی ضرایب A_{ij} بر طبق رابطه (22) خواهد بود.

\[
(A_i, B_i, D_1) = \int \frac{b}{2} Q_i(1, z, z^2) dz
\]

(22)

منهج‌های نیرو و مانند مانند استفاده از این معادلات، معادلات ترمکموئیک پیوسته مخاطی به صورت روابط (23)-۲۸ (به‌طور مثال):

\[
N_{xx} + N_{yy} \sin(\beta) \frac{R(x)}{R(x)} (N_x - N_y) = 0,
\]

\[
N_{xx} \frac{N_{yy}}{R(x)} + 2 \sin(\beta) \frac{\cos(\beta) Q_{yz}}{R(x)} = 0,
\]

\[
Q_{xx} + Q_{yy} \frac{\sin(\beta) N_y}{R(x)} + \cos(\beta) Q_{yz} \frac{\cos(\beta) N_x}{R(x)} = 0,
\]

\[
- \frac{1}{R(x)} (R(x) N_x w_x + N_y w_y),
\]

\[
- \frac{1}{R(x)} (R(x) N_y w_x + N_y w_y),
\]

\[
M_{xx} + M_{yy} \frac{\sin(\beta)}{R(x)} (M_x - M_y) - Q_{xx} = 0,
\]

\[
M_{xy} + M_{yy} \frac{\sin(\beta)}{R(x)} (M_x - M_y) = Q_{yz} = 0.
\]

(24) (25) (26) (27) (28)

همچنین شرایط مرزی کلی برای دو انتها پوشنه به صورت رابطه (19) حاصل می‌شود.

\[
N_i = \int \frac{b}{2} \sigma_i(1, z) dz, \quad (i = x, y, xy)
\]

(19)

که در رابطه (19) بایان می‌شود.

\[
Q_{11} = \frac{E_{11} - \nu_{12} E_{22}}{1 - \nu_{12}}, \quad Q_{22} = \frac{E_{22} - \nu_{12} E_{11}}{1 - \nu_{12}}.
\]

\[
Q_{12} = \frac{E_{12}}{1 - \nu_{12}}, \quad Q_{66} = G_{12}, \quad Q_{44} = G_{44}, \quad Q_{55} = G_{55}
\]

(18)

مقطع با نشان‌های شده در رابطه (۱۹)، منهج‌های نیرو و مانند به صورت رابطه (19) جامب می‌شوند.

\[
(N, M_i) = \int \frac{b}{2} \sigma_i(1, z) dz, \quad (i = x, y, xy)
\]

(19)

همچنین شرایط مرزی کلی برای دو انتها پوشنه به صورت رابطه (29) می‌باشد.

\[
N_i \delta u = N_{xx} \delta u = Q_{xx} \delta w = M_{xx} \delta \varphi_x = M_{xy} \delta \varphi_y = 0
\]

(29)

به منظور دستیابی به دادی برای کلیه کمان‌های مورد مطالعه از این معادلات پایداری اثر کشش آرام ایجاد به این معادلات می‌باشد که در نظر گرفته شده از این معادلات با نشان‌های شکل 2 در رابطه (28) معادلات مطلوب خشی مشخص می‌شود.

\[
N^0 = \left(A_{12} N_x + B_{12} N_y \right) \sin(\beta) L \frac{1}{R(x) A_{22} \ln \left(1 + \frac{\sin(\beta)}{R_i} \right)}
\]

(30)

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{x0} \\
\varepsilon_{y0} \\
\gamma_{xy0}
\end{bmatrix} + \frac{1}{r} \begin{bmatrix}
X_x \\
X_y \\
X_{xy}
\end{bmatrix}
\]

(31)

\[
\begin{bmatrix}
\varepsilon_{x0} \\
\varepsilon_{y0} \\
\gamma_{xy0}
\end{bmatrix} = \begin{bmatrix}
\varphi_y + \frac{w_y}{R(x)} \cos(\beta)/R(x) \phi_x, w_x
\end{bmatrix}
\]

(15)

که در رابطه (15) روابط (16) حاصل می‌شود که در رابطه (15) روابط (16) حاصل می‌شود.

\[
\begin{aligned}
\dot{\varepsilon}_x &= \frac{u_x}{R(x)}, \quad \dot{\varepsilon}_y = \frac{v_y}{R(x)}, \quad \dot{\varepsilon}_x = \frac{u_y}{R(x)}, \quad \dot{\varepsilon}_y = \frac{v_x}{R(x)}.
\end{aligned}
\]

\[
\begin{aligned}
\dot{\gamma}_{xy} &= \frac{u_x}{R(x)} v_y - \frac{v_x}{R(x)} u_y = \frac{v_y}{R(x)} u_x - \frac{u_y}{R(x)} v_x.
\end{aligned}
\]

\[
\begin{aligned}
\beta_x &= w_x, \quad \beta_y = \frac{1}{R} (\delta_x v - w_y).
\end{aligned}
\]

(16)

در رابطه (14) و (15)، روابط (16) حاصل می‌شود که در رابطه (15) روابط (16) حاصل می‌شود.

\[
\begin{aligned}
\sigma_x &\equiv \frac{\varepsilon_x}{\varepsilon_{x0}}, \quad \sigma_y = \frac{\varepsilon_y}{\varepsilon_{y0}}, \quad \sigma_{xy} = \frac{\gamma_{xy}}{\gamma_{xy0}},
\end{aligned}
\]

(17)

با توجه به روابط ارائه شده برای کلیه کمان‌ها، نشان‌های منهج‌های نیرو و مانند به استفاده از این معادلات ترمکموئیک پیوسته مخاطی به صورت روابط (23) به‌طور مثال:

\[
\begin{aligned}
N_x + N_{xy} \frac{\sin(\beta)}{R(x)} (N_x - N_y) = 0,
\end{aligned}
\]

(24)

\[
\begin{aligned}
N_{xx} \frac{N_{yy}}{R(x)} + \frac{2 \sin(\beta)}{R(x)} \frac{\cos(\beta) Q_{yz}}{R(x)} = 0,
\end{aligned}
\]

(25)

\[
\begin{aligned}
Q_{xx} + Q_{yy} \frac{\sin(\beta) N_y}{R(x)} + \cos(\beta) Q_{yz} \frac{\cos(\beta) N_x}{R(x)} = 0,
\end{aligned}
\]

(27)

\[
\begin{aligned}
M_{xx} + M_{yy} \frac{\sin(\beta)}{R(x)} (M_x - M_y) - Q_{xx} = 0,
\end{aligned}
\]

(28)

\[
\begin{aligned}
M_{xy} + M_{yy} \frac{\sin(\beta)}{R(x)} (M_x - M_y) = Q_{yz} = 0.
\end{aligned}
\]

شکل 1: نمای کلی از هندسه پوشنه مخاطی

1 Shear correction factor
در رابطه بالا نیز η_{ij} معرف ضرایب η_{ij} بایان داده شده در صورتی که بردار سنوی F بطور صحیح تعریف شده یک"

$$ F = [f(x)] = [f(x_1), f(x_2), \ldots, f(x_n)]^T $$

(۴۰)

توجه داشته باشید، $x = [x_1, x_2, \ldots, x_n]$ مخفف مقادیر نهایی x در نظر گرفته شده است که در صورت اجرای الگوریتم، این مقادیر به تنظیم از x می‌باشد. با این حال، x همچنان در صورت اجرای الگوریتم، این مقادیر به تنظیم از x می‌باشد. با این حال، x همچنان در

$$ \frac{\partial^2}{\partial x^2} F = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} \\ \vdots \\ \frac{\partial^2 f}{\partial x^2} \end{bmatrix} $$

(۴۰)

در رابطه بالا $\frac{\partial^2}{\partial x^2} F$ تعریف می‌شود.

$$ \frac{\partial^2}{\partial x^2} [f(x)] = \begin{bmatrix} c_{ij} \end{bmatrix}, \quad i = 1, \ldots, n_x, \quad j = 1, \ldots, n_x $$

(۴۲)

به صورت بالا (۴۳) بیان می‌شود.

$$ L_x = \prod_{i=1}^{n_x} (x_i - x_j) $$

(۴۴)

تحت‌جمله‌های که به نهایت x در دو انتهای یک‌نقطه می‌تواند بود.

$$ x_1 = \frac{1}{2} \left(1 - \cos \frac{i-1}{n_x-1} \pi \right) $$

(۴۵)

در رابطه بالا x_i به صورت رابطه (۴۳) بیان می‌شود.

$$ D_x^1 = [a_{ij}], \quad D_x^2 = [b_{ij}] $$

(۴۶)

در رابطه بالا D_x^1 و D_x^2 به صورت رابطه (۴۸) بیان می‌شود.

$$ \begin{cases} a_{ij}^1 = 0 \quad & i, \quad j = 1, \ldots, n_x \\ a_{ij}^1 = \frac{(-1)^{i-1}}{2} \frac{\pi(i-1)}{n_y} \quad & i \neq j, \quad i, j = 1, \ldots, n_x \\ a_{ij}^1 = \frac{(-1)^{n_y-j+1}}{2} \frac{\pi(n_y-j+1)}{n_y} \quad & i = j, \quad i, j = 1, \ldots, n_x \\ a_{ij}^2 = a_{ij} \quad & i, \quad j = 1, \ldots, n_x \\ a_{ij+1}^2 = a_{ij} \quad & i = 1, \ldots, n_x - 1 \\ a_{n_x}^2 = a_{n_x-1} \quad & i = n_x \\ \end{cases} $$

(۴۸)

برای مثال، چنین روابطی می‌تواند به صورت زیر باشد:

$$ \frac{\partial^2 f(x)}{\partial x^2} = \sum_{i=1}^{n_x} c_{ij} f(x_i), \quad i, \quad j = 1, \ldots, n_x $$

(۴۹)

برای اینکه تا سطح می‌تواند به صورت زیر باشد:

$$ \frac{\partial^2 f(x)}{\partial x^2} = \sum_{i=1}^{n_x} c_{ij} f(x_i), \quad i, \quad j = 1, \ldots, n_x $$

(۴۹)

برای اینکه تا سطح می‌تواند به صورت زیر باشد:

$$ \frac{\partial^2 f(x)}{\partial x^2} = \sum_{i=1}^{n_x} c_{ij} f(x_i), \quad i, \quad j = 1, \ldots, n_x $$

(۴۹)

برای اینکه تا سطح می‌تواند به صورت زیر باشد:

$$ \frac{\partial^2 f(x)}{\partial x^2} = \sum_{i=1}^{n_x} c_{ij} f(x_i), \quad i, \quad j = 1, \ldots, n_x $$

(۴۹)
پیوسته‌های مخروطی ساخته شده از نانو کامپوزیت‌های هدف‌مند از آن می‌شود، بدین منظور از استریل‌گزینگ مکانیکی مولتی‌لایه‌ای کامپوزیت‌های پیام‌زده می‌گردد.

یک مدل عناصر ساختمانی (PMMA) جایگزین یک گالگن، یک ضریب پایانی، و یک ضریب باریکت، که همان عناصری که در نظارت گرفت برای نانو لوله، خواص آن به همراه یک ضریب پراکنده گرایه در راستای محیطی نقش می‌بازد.

\[E_{\text{eff}} = 5.6466 \text{ TPa}, \quad E_{\text{eff}} = 7.8000 \text{ TPa}, \quad \rho_{\text{eff}} = 1400 \text{ kg/m}^3 \]

ضرایب پارامتر کارایی نانودویژن‌ها از طریق مطالعات نتایج حاصل از قانون ترکیب تعیین یافته و روش دیایمیک مکانیکی محاسبه می‌گردد در اینجا ضرایب از سطح هر لایه مانند X، Y، و Z و به سیستم مکانیکی قرار گرفته به صورت زیر آن می‌باشد:

\[V_n = 0.12 \quad \eta_1 = 0.137 \quad \eta_2 = 1.022 \quad \eta_3 = 0.715 \]
\[V_n = 0.17 \quad \eta_1 = 0.142 \quad \eta_2 = 1.626 \quad \eta_3 = 1.138 \]
\[V_n = 0.28 \quad \eta_1 = 0.141 \quad \eta_2 = 1.585 \quad \eta_3 = 1.109 \]

همچنین لازم به ذکر است که زیر نمایی از این توزیع جریان در سطح مخاطه پوسته به صورت یک دبیر در نظر گرفت شده است. شرایط مرزی متقابل در مکان‌ها و زمان‌های مختلف به صورت زیر که می‌تواند به طرف محدود شرایط مرزی می‌باشد.

\[u_T = \begin{bmatrix} u_{T1}, u_{T2}, \ldots, u_{Tn} \end{bmatrix} \]
\[v_T = \begin{bmatrix} v_{T1}, v_{T2}, \ldots, v_{Tn} \end{bmatrix} \]
\[w_T = \begin{bmatrix} w_{T1}, w_{T2}, \ldots, w_{Tn} \end{bmatrix} \]

\[\phi_x = \begin{bmatrix} \phi_{x1}, \phi_{x2}, \ldots, \phi_{xn} \end{bmatrix} \]
\[\phi_y = \begin{bmatrix} \phi_{y1}, \phi_{y2}, \ldots, \phi_{yn} \end{bmatrix} \]

با توجه به اینکه مقادیر دیگر متنوع‌های مکان در راستای محوری و محیطی در نظر گرفته شده است، به‌عنوان کامپوزیت می‌باشد.

\[\left(D_{xx} \right) = I_y \otimes I_y \]
\[\left(D_{yy} \right) = I_x \otimes I_x \]

\[\left(D_{xy} \right) = I_x \otimes I_y \]

\[\left(D_{yx} \right) = I_y \otimes I_x \]

در راستای یک سطح و با بررسی همسانی واژه‌ای (35) در مورد (24)،

\[\begin{align*}
L_{11}u + L_{12}v + L_{13}w + L_{14}\Psi_x + L_{15}\Psi_y &= 0, \\
L_{21}u + L_{22}v + L_{23}w + L_{24}\Psi_x + L_{25}\Psi_y &= 0, \\
L_{31}u + L_{32}v + L_{33}w + L_{34}\Psi_x + L_{35}\Psi_y &= 0, \\
L_{41}u + L_{42}v + L_{43}w + L_{44}\Psi_x + L_{45}\Psi_y &= 0, \\
L_{51}u + L_{52}v + L_{53}w + L_{54}\Psi_x + L_{55}\Psi_y &= 0
\end{align*} \]

به‌عنوان نتایج در جدول 1 حاصل از سیستم نام‌گذاری کامپوزیت‌های نانو کامپوزیت‌های هدف‌مند

جدول 1: مقایسه بحران کامپوزیت‌های نانو کامپوزیت‌های هدف‌مند

<table>
<thead>
<tr>
<th>نتایج حاضر</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 1</td>
<td>0.94</td>
</tr>
<tr>
<td>جدول 2</td>
<td>0.89</td>
</tr>
<tr>
<td>جدول 3</td>
<td>0.84</td>
</tr>
<tr>
<td>جدول 4</td>
<td>0.79</td>
</tr>
</tbody>
</table>

2- Poly methyl methacrylate
3- Armchair

1. Kronnecker product

نمونه‌های مکانیکی مورد انتخاب نانو لوله‌های کامپوزیت‌های نانو کامپوزیت‌های هدف‌مند از آن می‌شود، بدین منظور از استریل‌گزینگ مکانیکی مولتی‌لایه‌ای کامپوزیت‌های پیام‌زده می‌گردد.

\[b_{11} = \frac{\eta_2^2 - \frac{1}{3}}{12} \]
\[b_{11} = \frac{1}{2} \sin^2 \left(\frac{\pi y}{2h} \right) \]

\[h \]

\[b_{i,j} = \frac{-(\pi y)}{2h} \sin^2 \left(\frac{\pi y}{2h} \right) \]

\[b_{i,j} = b_{i,j+1} \]

\[\text{کده در رابطه با} \]
تکیه کماسی از پوسته‌های مخاطی ساخته شده از کامپوزیت‌های تقویت‌شده برای تهویه لوله‌ها کریستالی مایع، عرضه می‌شود.

در این مقاله مجموعه‌ای از فرمول‌های مناسب برای تولید کماسی از پوسته‌های مخاطی ساخته شده از کامپوزیت‌های تقویت‌شده برای تهویه لوله‌ها کریستالی مایع، عرضه می‌شود.

در جدول 2 نمایش داده شده که در هر یک از این بخش‌ها، فرمول‌های مناسب برای تولید کماسی از پوسته‌های مخاطی ساخته شده از کامپوزیت‌های تقویت‌شده برای تهویه لوله‌ها کریستالی مایع، عرضه می‌شود.

در جدول 3 نمایش داده شده که در هر یک از این بخش‌ها، فرمول‌های مناسب برای تولید کماسی از پوسته‌های مخاطی ساخته شده از کامپوزیت‌های تقویت‌شده برای تهویه لوله‌ها کریستالی مایع، عرضه می‌شود.

در جدول 4 نمایش داده شده که در هر یک از این بخش‌ها، فرمول‌های مناسب برای تولید کماسی از پوسته‌های مخاطی ساخته شده از کامپوزیت‌های تقویت‌شده برای تهویه لوله‌ها کریستالی مایع، عرضه می‌شود.
حالیت کامپوزیت‌های پوسته‌های مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند تانو لوله‌های کرینی

دامی بحرانی کامپوزیت کاهش می‌یابد. همچنین استنباط می‌گردد که با افزایش نسب شعاع به ضخامت، افزایش نسب ویژگی‌های لوله کرینی ناپایداری حساسی سازن دانو کامپوزیتی کاهش می‌یابد. از طرف دیگر، بیشترین تاثیر نسب ویژگی‌های لوله بر دامی بحرانی کامپوزیت به ارزی کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۴ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند یا بار CR. مقدار مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

یکی از تغییرات دیگری که با تغییرات شعاع به ضخامت و نسب ویژگی‌های لوله کرینی مربوط بر دامی بحرانی کامپوزیت می‌باشد. دامی بحرانی کامپوزیت کاهش می‌یابد. همچنین استنباط می‌گردد که با افزایش نسب شعاع به ضخامت، افزایش نسب ویژگی‌های لوله کرینی ناپایداری حساسی سازن دانو کامپوزیتی کاهش می‌یابد. از طرف دیگر، بیشترین تاثیر نسب ویژگی‌های لوله بر دامی بحرانی کامپوزیت به ارزی کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۳ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند $V = \frac{a}{b}$ و $CR = 0.17$. مقدار مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

درحالی‌که گزارش کرده که در قالب یک نقشه دایره‌ای به شکل ۴ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

سانتی‌متر مکسیمی سختی ۹۳۴۸ درجه ۱۵ شماره ۱۰

شکل ۵ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۶ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۷ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۸ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۹ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۰ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۱ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۲ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۳ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۴ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۵ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.

شکل ۱۶ تغییرات اختلاف دامی بحرانی کامپوزیت پوسته مخروطی ساخته شده از کامپوزیت‌های نفوذ شده با توزیع هدف‌مند و مقادیر مختلف کسر حجمی $V = \frac{a}{b}$ می‌باشد.
لا يمكنني قراءة النص العربي المطبوع في الصورة. من فضلك قدم النص العربي إلى شكل نص طبيعي يمكنني قراءته.
\[L_{51} = -\left[(B_{22} + B_{66}) \sin(\beta) \bar{R} D^0 \right] + \left[(A_{12} + A_{66}) R D^0 D'_1 \right] \]
\[L_{52} = B_{66} D_2^0 + B_{66} \sin(\beta) R D^0 D'_1 + B_{44} R D^0 \]
\[L_{53} = -\left(k_{A44} + B_{66} \sin(\beta) \bar{R} D^0 \right) \]
\[L_{54} = (D_1 + D_{66}) R D_1^0 D'_1 + D_2 \sin(\beta) R D^0 + D_{66} \sin(\beta) \bar{R} D^0 - k_{A44} R D^0 \]
\[L_{55} = D_6 D_2^0 + D_6 \sin(\beta) R D^0 D'_1 + D_2 \sin(\beta) R D^0 \]
\[\bar{R} = \begin{pmatrix} 1 & \sin(\beta) x_1 \end{pmatrix} \begin{pmatrix} 1 & \sin(\beta) x_2 \end{pmatrix} \]
\[\bar{R} = \begin{pmatrix} 1 & \sin(\beta) x_1 \end{pmatrix} \begin{pmatrix} 1 & \sin(\beta) x_2 \end{pmatrix} \]
\[\bar{R} = \begin{pmatrix} 1 & \sin(\beta) x_n \end{pmatrix} \]