An Investigation of Effects of Tool size and Feed rate on Tool life in High Speed Milling of Ti-6Al-4V alloy

Habiballah Safari¹, Mohammad Reza Dashthbayazi², Mohammad Khoran¹*

1- Department of Mechanical Engineering, Esfarayen University, Esfarayen, Iran
2- Department of Mechanical Engineering, Shahid Bahonar University, Kerman, Iran
* P.O.B. 9661989135, Esfarayen, Iran, m.khoran@esfarayen.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 30 August 2016
Accepted 12 October 2016
Available Online 14 November 2016

Keywords: wear land, feed rate, high speed, tool life, titanium alloy

ABSTRACT

Selecting tool materials, tool sizes and determining the cutting parameters presents a great challenge in machining operations especially in high speed machining processes. In this study effect of feed rate which is one of the important machining parameters and tool size on tool life in high speed machining of Ti-6Al-4V alloy were investigated. Fixed cutting speed of 200 m/min, feed rate of 0.03 and 0.06 mm/tooth together with axial cutting depth of cut 5.0 mm, and radial cutting depth of cut 1.5 mm were employed as the cutting parameters. TiAlN + TiN coated tungsten carbide and cemented carbide insert in two different sizes was used during machining operations. Flank wear land measurement was taken by using a toolmakers’ microscope and recorded accordingly throughout the machining processes. The results showed during the machining employing both feed rate and using smaller tool size chipping occurred on the tool nose along with gradual tool flank wear. Also by increasing the feed rates utilizing the smaller size of tool highly affected tool life compared to employing the larger one during the high speed machining operations especially in high speed machining processes. In this study effect of feed rate on tool life in high speed machining of Ti-6Al-4V alloy were investigated. Fixed cutting speed of 200 m/min, feed rate of 0.03 and 0.06 mm/tooth together with axial cutting depth of cut 5.0 mm, and radial cutting depth of cut 1.5 mm were employed as the cutting parameters. TiAlN + TiN coated tungsten carbide and cemented carbide insert in two different sizes was used during machining operations. Flank wear land measurement was taken by using a toolmakers’ microscope and recorded accordingly throughout the machining processes. The results showed during the machining employing both feed rate and using smaller tool size chipping occurred on the tool nose along with gradual tool flank wear. Also by increasing the feed rates utilizing the smaller size of tool highly affected tool life compared to employing the larger one during the high speed machining operations especially in high speed machining processes.
محتوای خطایی بوده است و بطوری که بی‌معنی است.
در "شکل 7" اردو شده است. مورد حاصل از آن است که در این آزمایش بردارنده فلزات و فلزات نیلیا که از ظرف اخیر آن‌ها 50% بردارنده و نیز توان در حالی که ضریب افتراق طول عمر این میزان 15% گرده است. این اخطال فشار در طول عمر این را می‌توان به محرکه و سرعت برگرداننده داشت (د. تحریر). زیرا شدید ارگونومی برگرداننده به شدت در لبه را می‌تواند در به‌دست آوردن برگرداننده دام‌های دارای نیز رابطه با یکدیگر می‌گیرد.

شکل 7: سایز بردارنده مشابه از طول عمر این مکان

**جدول 1 درهم‌پیازی آیا آیا تی‌های این (Ti-6Al-4V) در محیط (Ti-6Al-4V) در محیطا
شکل ۶ سایز ابر در ماسه کاری سرعت بالا با ابر از کاربیده گردیده

به اندازه‌های مختلف و سرعت
0.03 mm/tooth و باریکه

Fig. 6 Tool wears versus tool life when high speed machining using different size of F40M grade type carbide tool at cutting speed 200 m/min and feed rate 0.03 mm/tooth.

شکل ۷ سایز ابر در ماسه کاری سرعت بالا با اندازه‌های مختلف ابر از کاربیده گردیده

به اندازه‌های مختلف و سرعت
0.06 mm/tooth و باریکه

Fig. 7 Tool wears versus tool life when high speed machining using different size of F40M grade type carbide tool at cutting speed 200 m/min and feed rate 0.06 mm/tooth.

شکل ۸ سایز ابر در ماسه کاری سرعت بالا با اندازه‌های مختلف ابر از کاربیده گردیده

به اندازه‌های مختلف و سرعت
0.06 mm/tooth و باریکه

Fig. 8 Tool wears versus tool life when high speed machining using the Nano Turbo Insert F40M grade type carbide tool at different feed rate and cutting speed 200 m/min.

شکل ۹ سایز ابر در ماسه کاری سرعت بالا با اندازه‌های مختلف ابر از کاربیده گردیده

به اندازه‌های مختلف و سرعت
0.06 mm/tooth و باریکه

Fig. 9 Tool wears versus tool life when high speed machining using the Micro Turbo Insert F40M grade type carbide tool at different feed rate and cutting speed 200 m/min.

شکل ۱۰ سایز ابر در ماسه کاری سرعت بالا با اندازه‌های مختلف ابر از کاربیده گردیده

به اندازه‌های مختلف و سرعت
0.06 mm/tooth و باریکه

Fig. 10 Tool wears versus tool life when high speed machining using the Mixed Turbo Insert F40M grade type carbide tool at different feed rate and cutting speed 200 m/min.
همان سایش اضافی در سطح آزاد اصلی می‌باشد و میزان سایش در سطح آزاد فرعی از موجب شکست سیلیک شد و لی از ابهره مانند کاری باید کنگره در این باب است. این سایش مربوط به دو رنگه ای از موجب شد که سایش سایش تعیین داشته شد که انتخاب امکانی در انتخاب پاتریشیا مانند کاری و عدم نسبت آن با ابهره از ابهره مورد استفاده است. شکل (c, d) نیز بهترین ابعاد سایش در سطح آزاد اصلی و فری در نرخ پیشرفت 0.06 را نشان می‌دهد. در این شکل نیز انتخاب مربوط به mm/tooth نرخ پیشرفت 0.03 mm/tooth تکرار شده است و می‌سین این موضوع می‌باشد که پاتریشیا مانند و اندازه ابهره مورد استفاده می‌باشد.

شکل 9 حذف پنده‌ای سایش ابهره مکوینویو این استر در سرعت 200 m/min و نرخ پیشرفت.

پیشرفت متفاوت:
(a) سایش در سطح آزاد اصلی f=0.03 mm/tooth
(b) سایش در سطح آزاد فرعی f=0.03 mm/tooth
(c) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(d) سایش در سطح آزاد فرعی f=0.06 mm/tooth

شکل 8 حذف پنده‌ای سایش ابهره مکوینویو این استر در سرعت 200 m/min و نرخ پیشرفت.

پیشرفت متفاوت:
(a) سایش در سطح آزاد اصلی f=0.03 mm/tooth
(b) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(c) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(d) سایش در سطح آزاد فرعی f=0.06 mm/tooth

بررسی تأثیر اندازه ابهره و نرخ پیشرفت بر عمر ابهره در هرFER ویژه سرعت بالای آلیاژ تیتانیوم (V) Ti-6Al-4V

شکل 8 حذف پنده‌ای سایش ابهره مکوینویو این استر در سرعت 200 m/min و نرخ پیشرفت.

پیشرفت متفاوت:
(a) سایش در سطح آزاد اصلی f=0.03 mm/tooth
(b) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(c) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(d) سایش در سطح آزاد فرعی f=0.06 mm/tooth

شکل 9 حذف پنده‌ای سایش ابهره مکوینویو این استر در سرعت 200 m/min و نرخ پیشرفت.

پیشرفت متفاوت:
(a) سایش در سطح آزاد اصلی f=0.03 mm/tooth
(b) سایش در سطح آزاد اصلی f=0.03 mm/tooth
(c) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(d) سایش در سطح آزاد فرعی f=0.06 mm/tooth

شکل 8 حذف پنده‌ای سایش ابهره مکوینویو این استر در سرعت 200 m/min و نرخ پیشرفت.

پیشرفت متفاوت:
(a) سایش در سطح آزاد اصلی f=0.03 mm/tooth
(b) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(c) سایش در سطح آزاد اصلی f=0.06 mm/tooth
(d) سایش در سطح آزاد فرعی f=0.06 mm/tooth

کسی‌گرایی تکرار شده در نتایج نشان داد که ابهره بروی ناری قابل ملاحظه‌ی بر عمر ابهره وارد می‌شود.

همگامی که عملیات مانند کاری سرعت بالا با ابهره اندازه بزرگتر انجام گرفت افزایش نرخ پیشرفت باعث تأثیر قابل ملاحظه‌ی بر طول عمر ابهره شد. اما در استفاده از ابهره با اندازه کوچکتر با دو در برابر شد نرخ پیشرفت طول عمر ابهره با میزان سری برای کاهش یافته این اختلاف با عنوان صحت توزیع حرارت بین ابهره بزرگتر است. نیز هرچند ابهره بزرگتر باشد حرارت جذب شده در لبه ابهره را می‌تواند در بدن ابهره خود دفع نماید.

