طراحی مسیر با هدف بهینهسازی زمان و کمیته کردن تعداد سوئیچ برای بازوی مارگون کابلی فضایی با مفاصل قفل شونده

چکیده- در این مقاله، طراحی مسیر سیستمیکی نوع خاصی از بازوهای ابر افزونه مورد بررسی قرار گرفته است. در این بازو با کاهش تعداد عملگرهای کابلی اضافه کردن سیستم قفل در هر لینک، وزن و تعداد عملگرهای ان تا حد زیادی کاهش پیدا کرده است. در این پژوهش، از روش بهینه‌سازی تکاملی پرپانگ در طراحی مسیر استفاده شده است و تعیین قیود سیستمیکی نظیر محدودیت حرکت مفاصل و قفو مربوط به سیستم قفل، با توجه به شرایط مناسب و مصرف انرژی و افزایش دقت حرکت، سیستم بی‌مشخص کمترین تعداد سوئیچ، بروز بهینه‌سازی یافته شده است. برای صحت کنارگذاری به نتایج بدست آمده چند آزمایش مختلف طراحی و بررسی شده است و براساس آن عملکرد مناسب روش پیشنهاد شده شناسایی شده است. در نهایت دوم، طراحی مسیر با هدف کمیته کردن زمان بر اساس توري بینگ-بنگ ارائه شده است. در این بخش سیستمیکی معکوس بازو در نقطه هدف به گونه‌ای حل شده است که مجموع غیر طول پایه‌های لینک‌ها حداکثر شوند. در این قسمت نتایج بدست آمده از روش پرپانگ با نتایج روش پلیدگانی سایزی انجام طبیعی مقایسه شده است تا صحت پاسخ‌های حاصل شده تایید و عملکرد صحیح آن روش‌شود.

کلیدواژگان: طراحی مسیر، بهینه‌سازی، بازوهای ابر افزونه، الگوریتم پرپانگ

Minimum time and minimum switch path planning for a hyper-redundant manipulator with lockable joints

A. Taherifar¹, H. Salarieh²*, A. Alasty³

1- MSc of Mech. Eng., Sharif Univ. of Technology, Tehran, Iran
2- Assist. Prof. of Mech. Eng., Sharif Univ. of Technology, Tehran, Iran
3- Prof. of Mech. Eng., Sharif Univ. of Technology, Tehran, Iran
* P.O. B. 11155-9567 Tehran, salarieh@sharif.ir

Abstract- In this paper, the kinematic path planning of a special hyper-redundant manipulator with lockable joints is studied. In this manipulator the extra cables are replaced by a locking system to reduce weight of the structure and the number of actuators. In this research, the particle swarm optimization is used for path planning. In addition, the kinematic constraints such as joint limits are considered. In the first part of this paper, the minimum switch path planning is solved. This kind of path planning will decrease the vibration and energy consumption and increase the accuracy of manipulator. To validate the result, an innovative test is designed. According to the test results, the performance of the proposed method is shown. In the second part of the paper, the minimum time trajectory planning is studied based on the bang-bang theory. The inverse kinematic of manipulator is calculated such that the sum of legs length changes is decreased. Finally, the result of trajectory planning obtained from particle swarm optimization are compared to simulated annealing optimization results to confirm the performance and correctness of results.

Key words: Path planning, Optimization, Redundant manipulators, Particle swarm optimization
1- مقدمه

بازویهای مارکون، بازویهایی با درجات آزادی افزونه هستند که تعداد درجات آزادی آنها از احتمال مورد نیاز برای دسترسی به تمام نقاط فضا پیش درست نمی‌باشد. با توجه به شکل ظاهری بازویهای مارکون، از استراتژی‌های خروجی طبقه‌بندی و بازوی هشت‌تایی، مختصات محطقلات استفاده شده است. بازویهای با درجات آزادی افزونه، توانایی کار در محیط‌های کامل‌مدیریتی، خیلی مهم و خطرناک توجه کار در راکت‌های هسته‌ای، اعمال جراحی، کتانش و استقامت‌های فضایی را دارند.[1] با توجه به درجات آزادی بازویهای بازو، جلوگیری از برخورد با مواد نیروکاربردی و ایجاد برخورد از بندرگاه هزینه متفاوتی را با جهت بافتن بازو بهینه بکار برده و هزینه مشابه کارکرد.

2. تعریف

2- تعریف

سیستم مکانیکی معکوس این بازویهای 7 مدل طراحی مسیر این که کار انرژی کار در محیط‌های کامل‌مدیریتی را دارند.[1] با توجه به درجات آزادی بازویهای بازو، جلوگیری از برخورد با مواد نیروکاربردی و ایجاد برخورد از بندرگاه هزینه متفاوتی را با جهت بافتن بازو بهینه بکار برده و هزینه مشابه کارکرد.

3. مدل‌سازی

3- مدل‌سازی

طراحی مسیر بازویهایی می‌تواند با روش سنی سیستم و باعث هزینه بسیار بیشتر بکار برده. به عنوان مثال، تابع هزینه معکوس کمیته‌ها در سطح‌های[2-3] کمیته‌ی حرکت حرکت، جلوگیری از برخورد با مواد نیروکاربردی در نظر بررسی می‌گردد.

4. بررسی

5. بررسی

6- TSP

7- Task scheduling problem

8- NP-hard

6. TSP

7. Task scheduling problem

8. NP-hard
2- مفاهیم اولیه

1- تعریف مسئلة

در این مقاله هدف طراحی مسیر نوپا از باربک یا بارسی در جریان آزادی آن با یک ایده در این مقاله که یک ایده استفاده از سبک یک ماهور و سیستم در این مقاله با استفاده از قابلیت باعث ایده استفاده می‌کرد. کارکرد حساسیت و سیستم در این مقاله با استفاده از مکانیک، کارکرد حساسیت. کارکرد حساسیت. کارکرد حساسیت و سیستم در این مقاله با استفاده از مکانیک، کارکرد حساسیت. کارکرد حساسیت.

(1) $l_1 + l_2 + l_3 = L$

در این رابطه، l_1, l_2, l_3 به ترتیب طول باربک یا بارسی، به ترتیب طول باربک یا بارسی و L طول مسیر می‌باشد. این ایده در این مقاله با استفاده از مکانیک، کارکرد حساسیت و سیستم در این مقاله با استفاده از مکانیک، کارکرد حساسیت.

(2) $l_{min} \leq l_i \leq l_{max}$

در این رابطه، l_{min} و l_{max} به ترتیب حداقل و حداقل طول باربک یا بارسی می‌باشد.

پایه‌ها می‌باشند. تمامی قیده‌های بیان‌شده در روابط (1) و (2) در طراحی مسیر نوپا لحاظ خواهند شد.

1. Annealing

2- RPS

مهندسی مکانیک مدرس دوره 12 شماره 1391 مه‌ہراری فر و همکاران

هنرور در سال 1399 آیه جدیدی استفاده از سیستم قفل در مفاصل را مطرح کرد[17]. به کمک این نویزی می‌توان، بدینا با استفاده از سیستم قفل، کلکسی کردن، کارکرد حساسیت و سیستم در این مقاله با استفاده از مکانیک، کارکرد حساسیت. کارکرد حساسیت و سیستم در این مقاله با استفاده از مکانیک، کارکرد حساسیت.

Downloaded from mme.modares.ac.ir at 11:57 IRDT on Tuesday May 28th 2019
محور دوران مفاصل پایینی عمود بر خط چین‌ها می‌باشد.

پارامترهای هندسی پایان در جدول 1 آمده است.

شکل 1 شماتیک باروی N لینگی کابلی

جدول 1 پارامترهای هندسی پایان بر حسب میلی‌متر

<table>
<thead>
<tr>
<th>a₁</th>
<th>a₂</th>
<th>l₁</th>
<th>l₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

با درنظر گرفتن دستگاه مختصات مطبق شکل 2 بر روی صفحه پایینی، مختصات نقاط روی صفحات ثابت و متحرک را می‌توان به صورت روابط (3) و (4) نوشت.

شکل 2 شماتیک یک لینگی به همراه سولونیتیها و اتصالات

با متصل کردن لینگهای به یکدیگر و تکمیل پایان، در هر لحظه، تمامی لینگهای به جز یکی از آنها فصل شده و سپس با تغییر طول کابل تغییرات لازم در اندازه پایان لینگ به وجود آمده و بدين ترتبی می‌توان با هر تریب دلخواهی مفصل را آزاد و یا قفل کرد و با کشش سه کابل هر شکل دلخواهی را به پایان دهد.

شکل 3 سیستم مختصات منصل به صفحه پایینی

$$P_1 = \begin{bmatrix} x_1 = \frac{-a_1}{2} \\ y_1 = \frac{-\sqrt{3}}{6} a_1 \\ z_1 = 0 \end{bmatrix} , \quad P_2 = \begin{bmatrix} x_2 = \frac{a_2}{2} \\ y_2 = \frac{-\sqrt{3}}{6} a_2 \\ z_2 = 0 \end{bmatrix} , \quad P_3 = \begin{bmatrix} x_3 = 0 \\ y_3 = \frac{\sqrt{3}}{3} a_3 \\ z_3 = 0 \end{bmatrix}$$

شکل 4 طول جک‌ها به صفحه پایینی

$$l_1, l_2, l_3$$

طول ضلع مثلث متساوی‌الاضلاع پایینی a_1 و طول ضلع مثلث متساوی‌الاضلاع بالایی a_2 می‌باشد.
اطلاعات مربوط به هدف پیشنهادی زمان و کمیته کردن...

اگر موقعیت مجري نهایی بازو در دستگاه مختصات nP شماره N باشد، داریم:

$$^nP = T^nT \ldots T^aT^b \ldots T^aP$$ (7)

در معادله (7) nT ماتریس است که موقعیت و B جهت دستگاه مختصات A نسبت به دستگاه مختصات را بیان می‌کند و به صورت زیر تعریف می‌شود.

$$T = \begin{bmatrix} ^aR_x(h_{y_{x_{z_{a}}}}) & ^aP_{bxy_{(b_{y_{z_{a}}})}} & 0 \\ 0 \\ 0 \\ \end{bmatrix}$$ (8)

که در آن aR ماتریس دوران دستگاه A نسبت به دستگاه B را نشان می‌دهد و $^aP_{bxy}$ مختصات مبدا دستگاه B نسبت به دستگاه A می‌باشد.

0R مختصات مبدا دستگاه A نسبت به دستگاه B است. بنابراین داریم:

$$^0R = [R_1, R_2, R_3]$$

$$R_1 = \frac{P'_1 - P'_1}{P'_1 - P_1}, \quad R_2 = \frac{P'_2 - P_2}{P'_2 - P_1}, \quad R_3 = R_1 \times R_2$$

$$^0P_{bxy} = \frac{P'_1 + P'_2 + P'_3}{3}$$ (9)

به این ترتیب می‌توان با داشتن طول تمام پایه‌ها، مختصات تمام نقاط بازو را نسبت به دستگاه مختصات اصلی متصل به کف بازو پیدا کرد. به عبارتی سیستم‌های سیستمیک مستقیم بازو را می‌توان با مشابه طریقه سیستم‌های سیستمیک مستقیم یک لیست با استفاده از شیب‌های عرضی توضیح خواهد داد.

3-2 مدل‌سازی سیستماتیک با شیب‌های عرضی

سپری از سیستماتیک یپچیده را می‌توان با استفاده از شیب‌های عرضی و با دادن داده‌های ورودی و خروجی سیستم مدل‌سازی کرد. در شیب‌های عرضی، بدون نیاز به مدل‌سازی داخلی سیستم می‌توان سیستم را با دقت بازیابی کرد. استفاده از شیب‌های عرضی علاوه بر سادگی مدل‌سازی، باعث افزایش سرعت محاسبات شده و امکان انجام محاسبات به صورت آنلاین را فراهم می‌کند.

با توجه به اینکه برای حل سیستماتیک معکوس بازوی افروند کالی‌بی با روشن‌سازی روابط سیستماتیک مستقیم بازو و پاره‌ها فرآیندهای شده و از طرفی روابط نهایی سیستماتیک مستقیم

$$x'_i = \frac{-a}{2} + \frac{\sqrt{3}}{2} l \cos \theta_i$$

$$y'_i = \frac{-\sqrt{3}}{6} a + \frac{1}{2} l \cos \theta_i$$

$$z'_i = l \sin \theta_i$$

$$x'_i = \frac{a}{2} - \frac{\sqrt{3}}{2} l \cos \theta_i$$

$$y'_i = \frac{-\sqrt{3}}{6} a + \frac{1}{2} l \cos \theta_i$$

$$z'_i = l \sin \theta_i$$

با توجه به اینکه فاصله نقاط صفحه بالایی از هم a_i است، داریم:

$$(x'_i - x'_i)^2 + (y'_i - y'_i)^2 + (z'_i - z'_i)^2 = a_i^2$$

$$(x'_i - x'_i)^2 + (y'_i - y'_i)^2 + (z'_i - z'_i)^2 = a_i^2$$

$$(x'_i - x'_i)^2 + (y'_i - y'_i)^2 + (z'_i - z'_i)^2 = a_i^2$$

$$a_i^2 = -3a_i l \cos \theta_i - \sqrt{3a_i l} \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i$$

$$a_i^2 = -3a_i l \cos \theta_i - \sqrt{3a_i l} \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i$$

$$a_i^2 = -3a_i l \cos \theta_i - \sqrt{3a_i l} \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i + l_i \cos \theta_i$$

حال چنانچه طول‌های l_1, l_2, l_3 معلوم باشد، می‌توان معادلات (6) و (7) را حل کرد و مقادیر $\theta_1, \theta_2, \theta_3$ را بدست آورد. برای حل معادلات (6) باید از روش‌های حل عددی معادلات غیرخطی استفاده کرد. برای داشتن طول چک‌ها و زوايا با استفاده از ماتریس‌های انتقال می‌توان مختصات هر نقطه از بازو و 0 نسبت به دستگاه مختصات اصلی به دست آورد.
4- آموزش شبکه عصبی

برای مدلسازی سیستماتیک مستقیم، از یک شبکه عصبی
دلایلی استفاده شده است. با توجه به تغییرات مسئله، تعداد
نورون‌های لایه مخفی برای انتحاب شده است. برای آموزش
شبکه از یک هشت‌گره ورودی-خروجی استفاده شده است.

سه ورودی شبکه عبارتند از i_1, i_2, i_3 و سه خروجی شبکه
$	heta_1, \theta_2, \theta_3$ به بهینه‌سازی مدل تعداد 478 ورودی
صحت‌گذاری شرخو به افزایش کرده و آموزش به پایان رسیده
است. میانگین مربعات خطای 3 داده‌های صحیح‌گذاری در به‌ترين
حالت به 0.01×0.03 رسیده است. شکل 5 تغییرات خطای
داده‌های آموزشی، آزمایشی و صحیح‌گذاری را در تکرارهای
 مختلف نشان می‌دهد. نمونه‌های مختلف این داده‌ها در شکل
6 نشان داده شده‌اند. با توجه به این نمونه‌ها، میانگین داده‌های
آموزشی و غیر آموزشی به ترتیب 18/29/99/96 درصد و 99/93
درصد می‌باشد. به‌طور کلی این مدلسازی سرعت انجام
محاسبات حدود 12 برابر می‌شود.

شکل 5 خطای داده‌های آموزشی، آزمایشی و صحیح‌گذاری
در تکرارهای مختلف آموزش شبکه عصبی

1. Epoch
2. Over-fitting
3. MSE

شکل 6 نمودار میانگین داده‌های آموزشی، آزمایشی، صحیح‌گذاری
و کل داده‌ها

برای اثبات عمکرکی صحیح مدل در یک پارایه 6 لایه‌ای،
200 جفت داده تصادفی به شبکه عصبی داده شده است. در هر
یک از این جفت داده‌ها، طول پایه‌های تمام لینک‌های باروش
وجود دارد. به غیر از دریگ سیار i_1, i_2, i_3، هر یک
جن آزاد قرار داده شده است. با اعمال ورودی‌ها به شبکه
عمبی $\theta_1, \theta_2, \theta_3$ برای هر لینک به طور آزاد و سپس
با استفاده از رابطه (7) مختصات مجزی نهایی باروش محاسبه
شد است. جدول 2 میانگین مربعات خطای و ریشه متوسط
مربعات خطای به 200 جفت داده آزمایشی نشان می‌دهد. واحده میانگین مربعات خطای میلی‌متر مربع و واحد
ریشه میانگین مربعات خطای میلی‌متر است. با توجه به
پارامترهای هندسی باروش در جدول 1 ذکه شده است. طول
عمودی بیک باروش 6 لایه‌ای حدود 240 میلی‌متر خواهد شد و
ریشه میانگین مربعات خطای آن زیر 1/2 میلی‌متر می‌باشد.

این تحقیق قابل در نظر گرفتن شده است. هر جنگ به
افزاری تعداد داده‌های آموزشی به همراه تعداد نورون‌های شبکه
و تعداد نورون‌های آن می‌توان خطا را کاهش داد. بدین‌ویژه است که
با پیچیده‌تر شدن شبکه و افزایش داده‌های آموزشی می‌توان

55
۳- پیشنهادی پرواز برندهاگان

روش پرواز برندهاگان یک الگوریتم پیشنهادی به یاده جمعیت است [18]. این روش در ابتدا توسط ابرهار و کنی ابدال شد. پیشنهادی به مصنفیت در این روش با تعداد یا پیشنهاد یا انتقال آغاز شده و سپس با تکرارهای یکپارچه پیامدهای پیشنهاد پایه فضای جستجو کشف می‌شود. در راهی سیستم‌ها، الگوریتم پرواز برندهاگان سیستم‌های فضایی و شرایط از الگوریتم‌های زنجیره عمل می‌کند و بیان‌سازی آن نیز ساده‌تر می‌باشد. توصیف جامع‌تر در مورد الگوریتم را می‌توان در مراجع [19] و [18] دانست. از ادامه توصیف منحصربه‌فردی از الگوریتم پرواز برندهاگان یکپارچه داده شده است.

۴- الگوریتم پرواز برندهاگان پیوسته

فرض کنید یک فضای جستجوی B دو بعدی با یک دسته N تابی از ذرات در این فضای داشته باشیم (این در همان برندهاگان مربوط به گروهی می‌باشد). برد B دو بعدی به نام $X = (X_1, X_2, ..., X_N)_{i=1,2,3,4}$ ذره ای است. در هر ذره از Bرد X_i که می‌تواند پایه انتخابی برای مسیر بین پیشنهادات باشد. از این روش می‌تواند در پایان انتخابی برای مسیر بین پیشنهادات بین هر دو می‌تواند با قراردادن مشخصیات در ذره ای تبیین هزینه به‌دست آورد. تقابل

1. PSO
مسیر سپری هدف پیشنهادی زمان و کمیته کرد.

شروع سپری سه کمیته زمان و کمیته کرده است.

شروع سپری سه کمیته زمان و کمیته کرد.

شروع سپری سه کمیته زمان و کمیته کرد.

شروع سپری سه کمیته زمان و کمیته کرد.

شروع سپری سه کمیته زمان و کمیته کرد.
در شکل 7 طراحی مسیر با کمترین سوئیچ برای نقطه به مختصات (110, 110, 100) نشان داده شده است. با اجرای الگوریتم بهینه‌سازی با ملاحظات ذکرشده در خشکی های قبلی، این حرکت نهایی با بازکردن فلز 3 لیفت انجام شده و باقی لیفت‌ها در وضعیت ابتداي خود مانده‌اند.

برای اجرای الگوریتم پرواز پرندگان، جمعیتی شامل 30 دره را انتخاب کرده و میانگین پذیری الگوریتم را سریدن به حداکثر 40 تکرار قرار می‌دهیم. ضریب اتحاد به‌روش رسمی (11) برای 2 قرار داده شده و یک تابع کاهشی خطي برای ضریب سرعت w انتخاب شده است. مقادیر حداکثر و حدااقل به ترتیب با سعی و خطا برای 0.1 و 0.5 قرار داده شده است.

شکل 8 وضعیت نهایی بارو در نقطه هدف (800, 800, 100) با بازکردن فلز 6 لیفت.
طول بازی از نهایی باز در نقطه هدف (200, 600) با پازکردن نقطه 4 لینک

در شکل 10 نهایی بازی در نقطه هدف (200, 600) با پازکردن نقطه 6 لینک

4- صحنه‌گذاری بر نتایج

روش های پیشنهادی سازی مبتنی بر طبیعی علوم ایستادی رایج برای رسیدن به پایان طول به طول طول بازی محدوده دقت شبکه عصبی آموزش داده شده است. دیده می‌شود که الگوریتم توانسته با پازکردن یک لینک به نقطه مورد نظر رپورد شکل 11 تصویر بازی نقطه 6 لینک را در وضعیت نهایی نشان می‌دهد.

شکل 11 وضعیت نهایی بازی در نقطه هدف (200, 600) با پازکردن نقطه 6 لینک

شکل 9 وضعیت نهایی بازی در نقطه هدف (200, 600) با پازکردن نقطه 4 لینک

مطلق ارزش نمی‌دهد. از این رو در سیستم با علی طبیعی اینکاری برای صحنه‌گذاری نتایج بدست آمده از این الگوریتم بهتر کرد.

در طراحی مسیر کمترین سوئیچ باید صحنه‌گذاری بر نتایج طول بازی از نهایی بازی از نهایی بازی را به صورت اتفاقی تغییر می‌دهد تا بازی در وضعیت مختصی قرار گیرد. این موضوع می‌تواند میلیام‌های طراحی مسیر از این پیشنهاد بررسی خواهد گردید. این آزمایش به وسیله قطع می‌تواند قبلاً دارند که اگر کننده کلی الگوریتم را نشان خواهد داد. این آزمایش برای جنگ مداخلات اجرا و نتایج بررسی شده. در این آزمایش‌ها ترجیحاً قبل یک و دو لینک باید شده است. زیرا پازکردن تعداد بیشتر اختلال و وجود پایش‌های صحیح درگیر را افزایش می‌دهد. در اینجا یک نمونه از استاد توضیح می‌دهد. مدل با مختصات (1/16، 0/1، 1/2، 7/8) می‌رسد. بعد از اجرای الگوریتم بهینه‌سازی با این نقطه هدف، بعد از اجرای الگوریتم بهینه‌سازی با این نقطه، با تریکم 145 و 100 میلی‌متر تغییر می‌دهد. مرجعي نهایی به مختصات (4/5، 9/3، 1/16، 0/1، 1/2، 7/8) می‌رسد.

1. Artificial life

مهندسی مکانیک مدرس دورة 12 شماره 1 اردیبهشت 1391

شکل 10 نهایی بازی در نقطه هدف (200, 600) با پازکردن نقطه 6 لینک

شکل 9 وضعیت نهایی بازی در نقطه هدف (200, 600) با پازکردن نقطه 4 لینک

شکل 11 وضعیت نهایی بازی زمانی که پایه‌های لینک 1 برای 145 و 100 میلی‌متر قرار داده شوند (از مراحل اول)
فرض می‌کنیم تغییر شتاب در وسط بازه افتاده باشد، و یعنی نقطه تغییر شتاب در برای $t = t_1 = \frac{l}{a}$ باشد و سرعت حرکت در انتهای بازه و حرکت در شروع بازه باشد. بدین ترتیب برای نوشته حرکت، یک تابع دهم به صورت زیر داریم:

\[q(t) = a_0 + a_1 t + a_2 t^2 \]

\[q(0) = 0, \quad q(t) = \alpha t, \quad \dot{q}(t) = \alpha \]

\[\Rightarrow q(t) = q_0 + \frac{1}{2} \alpha t^2 \]

\[q(t) = q_f, \quad \dot{q}(t) = 0, \quad \dot{q}(t) = \alpha t, \quad \Rightarrow q(t) = q_f - \frac{1}{2} \alpha t^2 + \alpha t, \quad t = \frac{l}{a} \]

(14)

(15)

در تابع $f(t)$، قطع لینگه‌های 1 و 2 باز شده و طول یابه‌ای آن مطلق رفتی دوم جدول 3 تنظیم شده است و در تابع $s(t)$، قطع لینگه‌های 1 و 2 در این جدول دقیقاً مشابه به نقطه هدف استفاده از کورینمو

اراضی نشان داده شد است.

| جدول 3 اطلاعات مربوط به تغییر طول یابه‌ای در ازامشیه‌های سگانه |
|---------------------------------|---|---|---|
| | l_1 | l_2 | l_3 |
| ازامشیه‌ها | 0.02 | 0.02 | 0.02 |
| مقادیر | 413 | 145 | 114 |
| نتایج | 0.02 | 0.02 | 0.02 |

5- مسئله کمترین زمان

یک طرح کلی پایانی مسیر بهینه زمانی، از آن جهت دارای اهمیت است که یکی از ربات‌های صنعتی چه تفاوت بهره‌وری باید وظیفه مفسّر در کمترین زمان توسط ربات صوت یابد. به طور خاص در نمونه نمونه‌گیری کتابی فن در زبان به طور کمترین زمان باید از زمان‌های جالب در طراحی مسیر بهینه استفاده کند. طراحی مسیر بهینه زمانی می‌تواند با لحاظ کردن دینامیک مسئله و با در نظر گرفت در این مقاله طراحی مسیر بهینه کمترین زمانی باید همچنین در این مقاله می‌تواند با لحاظ کردن

برای داشتن حرکت کمترین زمانی می‌توان از تکنیک برای یک مسیر بهینه زمانی می‌تواند با لحاظ کردن

\[t_f = 2 \sqrt{\frac{q_f - q_i}{\alpha}} \]

(16)

شکل 12 نمودار تغییرات شتاب، سرعت و موقعیت هر مفصل برای حرکت بهینه زمانی

\[q(t) = q_0 + \frac{q_f - q_i}{2} \]

(17)

\[t_f = 2 \sqrt{\frac{q_f - q_i}{\alpha}} \]

\[\alpha \]

1. bang-bang
2-4-5 افزایش طول پایه یا کاهش طول پایه یا افزایش پایه (در گروه دوم) باعث تغییر طول
لبه نخ و باعث تغییر در طول لبه نخ و به طور مطلق خواهد شد.

4 نکته اصلی در این مقاله:

1- تغییر طول لبه نخ باعث تغییر در طول لبه نخ و به طور مطلق خواهد شد.

2- تغییر طول لبه نخ باعث تغییر در طول لبه نخ و به طور مطلق خواهد شد.

3- تغییر طول لبه نخ باعث تغییر در طول لبه نخ و به طور مطلق خواهد شد.

4- تغییر طول لبه نخ باعث تغییر در طول لبه نخ و به طور مطلق خواهد شد.

نتایج طراحی مسیر بهینه زمانی

بنا بر این مطالعه این طول لبه نخ استفاده کرده که برای
کم کردن زمان حرکت باید انتخاب داده که به طور
در طراحی سیستم‌ها مقایسه تابع ساده است و به به
مشخص می‌باشد. در طول لبه نخ (q) و طول پایه
(q) و برای (l1) و (l2) و (l) مشخص می‌باشد.

اگر با پایه طول پایه یا کاهش طول پایه یا
کاهش پایه یا افزایش پایه (در گروه دوم) باعث تغییر
لبه نخ و باعث تغییر در طول لبه نخ و به طور
مطلق خواهد شد.

با استفاده از روش برپایه گرده برپایه گرده و با
استفاده از 400 ذره انجام شده است. نتایج بهینه‌سازی برای یک

براساس این مطالعه این طول لبه نخ استفاده کرده که برای
کم کردن زمان حرکت باید انتخاب داده که به طور
در طراحی سیستم‌ها مقایسه تابع ساده است و به به
مشخص می‌باشد. در طول لبه نخ (q) و طول پایه
(q) و برای (l1) و (l2) و (l) مشخص می‌باشد.

اگر با پایه طول پایه یا کاهش طول پایه یا
کاهش پایه یا افزایش پایه (در گروه دوم) باعث تغییر
لبه نخ و باعث تغییر در طول لبه نخ و به طور
مطلق خواهد شد.

با استفاده از روش برپایه گرده برپایه گرده و با
استفاده از 400 ذره انجام شده است. نتایج بهینه‌سازی برای یک

بازوی ۱۲ درجه آزادی بعد از ۲۰ تکرار گزارش شدند. ضریب w و سایر یارایه‌ها، مطابق آنچه در طراحي مصور کمترین سولوتیوگین گفته شد، تنظیم شدند. ضریب c در فرمول (۱۸) برای این نقطه هدف برای ۱/۸ انتخاب شده است. شکل ۱۲ شماتیک بازو در حین حرکت از نقطه شروع به سمت نقطه هدف را نشان می‌دهد. منحنی سطح‌های مسری حرکت بازو را برای ترتیب خاصی از بار، و بسته‌کردن قفل‌ها نشان می‌دهد، لازم به توضیح است که بعد از تغییر سیماناتیک مکوس بازو در نقطه انتهایی، طول پایه‌های تمامی لینک‌ها به دست می‌آید. اگر این طول پایه‌ها به شدت به بازو اعمال شود، مستقل از ترتیب سونیچ‌ها به نقطه هدف مورد نظر می‌رسد.

![شکل ۱۴ تغییرات مختصه‌های x, y, z در مجري نهایي](image)

![شکل ۱۵ تغییرات محرکت مجري نهایي](image)

![شکل ۱۶ تغییرات محرکت مجرى نهایی](image)

بررسی سلسله‌های ۲۰ شماره ۱ ازدیپشته (۱۳۹۱)
نمایش پرتره یک روش نسبت به روش دیگر ارائه نشده‌اند، بلکه هدف این بوده که با نشان‌دادن نزدیکی پاسخ‌های بدست آمده از دو روش متغییر بر درستی آن‌ها صحیح‌گانشته شود.

با توجه به اینکه تابع هزینه در راسته (18) مشکل از دو تابع هزینه می‌باشد، با انتخاب یک ضریب ویژه ممیز، در تکرار های مختلف، مقدار متفاوتی برای f_i و f_{end} بدست می‌آید. اساسا این دو تابع در تعارض با یکدیگرند و کاهش یکی موجب به آزادی دیگری می‌شود. با توجه به این توضیحات، چنانچه در پایان به‌دست آمده، مقدار f_{end} کمتر از 5 میلی‌متر می‌باشد (در مرتبت دقت شکل عصبی آموزش داده شده و خطای کمتر از 10 درصد که پایین مورد قرار گرفته شده است). توضیحات ارائه‌شده می‌توان نتیجه دیگری را نیز به‌دست آورد. از اینجایی که محدوده‌ای از پاسخ مورد قبول قرار گرفته است، طبقاً نمی‌توان به‌هیچ‌کدام از پاسخ‌هایی که در محدوده قرار گرفته‌اند به‌پایه مطلق اطمینان کرد.

برای اجرای الگوریتم شبیه‌سازی انجام از تابع انجام پایان‌نامه استفاده شده است و دامی شروع برای 500 در حالت گرفته شده است و معیار بایان الگوریتم رضی‌اند به‌یک از دو عامل زیر می‌باشد:

1. رشدید به حداکثر تکرار ۵۰۰۰
2. باقی‌ماندن تغییرات تابع هدف در محدوده ۶۴ درصد

بعد از پایان الگوریتم شبیه‌سازی انجام از روش بهینه‌سازی جستجوی مستقیم الگویی (انفیل‌های) مقداده‌شده است. با انجام این کار نتایج بدست آمده بین 10 تا 20 درصد بهبود یافته که کمک می‌کند استفاده از روش تکی‌پی در برخی مقالات [10] دیده شده است. شکل 18 نمودار تغییرات از لحاظ هدف بر حسب زمان را در حین پاسخ‌سازی برای نقطه هدف (۴۰۰۰۰۰) نشان می‌دهد. در این اجزای، میزان دوم بعد از ۱۸۳۲ تکرار ارزش‌های الگوریتم متوقف شده است.

سه نقطه هدف مختلف برای انجام این الگوریتم درنظر گرفته شده است. جدول ۵ نتایج بهینه‌سازی برای این سه نقطه هدف را نشان می‌دهد. این نتایج بعد از ۵ تا ۱۰ بار اجرای الگوریتم و انتخاب بهترین با پایین به‌دست آمده‌اند. هم‌طوری که در جدول ۵ مشاهده می‌شود، مقدار f_{end} همگی کوچک‌تر

1. Pattern search

شکل 14: تغییرات سرمایه‌های نهایی در راسته‌های x, y و z برحسب زمان

شکل 15: تغییر طول کابل‌ها برحسب زمان

شکل 16-5: صحنه‌نگاری بر نتایج

می‌کند این سوال مطرح که چه تضمینی وجود دارد که پاسخ‌های به‌دست آمده از نظر زمانی بهینه‌اند. در پاسخ به این سوال می‌توان گفت که روش‌های بهینه‌سازی تکاملی تضمینی برای رسیدن به پایین مقدار زمان کنند. در این بخش برای اینکه نشان داده می‌باشد که بهبود پاسخ‌های به‌دست آمده نزدیک به بهینه زمانی می‌باشد، نتایج جدی نشان داده می‌باشد. در این بخش نتایج هدف را با نتایج روش شبیه‌سازی انجام محتوی مقایسه می‌کنیم. این مقایسه بر ارائه
پایان نمایش مکانیک و پیامدهای کمیکی

