Numerical investigation of energy separation in a low pressure vortex tube under different axial angles of injection nozzles

N. pourmahmoud1*, A. Jahangir Amini2, A. Hassanzadeh3, S.A. Izadi2

1- Assoc. Prof., Mech. Eng., Urmia Univ., Urmia, Iran
2- MSc. Student, Mech. Eng., Urmia Univ., Urmia, Iran
3- PhD. Student, Mech. Eng., Urmia Univ., Urmia, Iran
* P.O.B. 165 Urmia, Iran. n.pormahmod@urmia.ac.ir

Abstract- In this article, effect of axial angle of injection nozzles on the flow field structure in a Low-Pressure vortex tube has been investigated by computational fluid dynamics (CFD) techniques. Numerical results of compressible and turbulent flows are derived by using the standard k-ε turbulence model. The dimensions of studied vortex tubes are kept the same for all models and the performance of machine is studied under 6 different axial angles (β) of nozzles. Achieving to a minimum cold exit temperature is the main goal of this numerical research. Our investigation shows that utilizing this kind of nozzle changes the energy separation and flow characteristic. Considering total pressure of cold flow, a new parameter, ξ is defined and results shows that changing the amount of ξ can affect the cold exit temperature directly. Finally, some results of the CFD models are validated by the available experimental data which show reasonable agreement.

Keywords: Vortex Tube, Axial Angle, Energy Separation, ξ, Numerical Simulation.
در بررسی‌های قبلی در مورد تأثیر نازل تزریق‌گاز بر روی عملکرد دستگاه‌ها، تغییر تعداد نازل ورودی بوده است. از جمله، نیاز به کرماچی و اولبرت (1919)، شمس‌الدینی و حسین‌نژاد (2010) و همکاران (2011) اشاره کرده‌اند.

موارد اشاره‌شده نشان می‌دهد که تزریق گاز و گرم را به عنوان پارامتر مواد مطالعه، در نظر گرفته‌اند. ولی در این مقاله سعی بر این است با مطالعه پارامترهای اضافی از جمله فشار کل در پایه نازل‌ها و عدد مانع بررسی موضوع پرداخته شود.

۱- مقدمه

ورتکس نیوب دستگاهی است با هندسه‌ی شامله، بدون هچ قسمت متحرک هک قادر است جریان فشار بالا را به دو جریان گرم و سرد تفکیک کند. این بدنه اولین بار توسط رانکو (19) در گزارش توصیف کرده است. تکه‌ی مقطعی این مغناطیسی که گزارتک می‌شود، یک میدان جرخی قوی ایجاد می‌شود. این قطعات در ناحیه ورودی به‌طور توزیع‌یافته در جهت شعاعی جریان می‌شود که در نتیجه یک گرداب آزاد در ناحیه جریان گرم محیطی و یک گرداب جریانی در ناحیه جریان سرد داخلی تولید می‌شود.

شکل ۱ نمای عملکرد یک ورتنکس نیوب را همراه با اجزای آن نشان می‌دهد. پس از آن‌ها رس و هوا (21)، مارینوفسکی و الکسیف (22)، ناگی (23) و اسکای و همکاران (24) بررسی‌های آزمایشگاهی مهمی را را ارائه کرده‌اند. دایسرل و برازیورت (25)، ونگی و گوپوچو (26)، لیمیت و همکاران (27) و استفن و همکاران (28) در این زمینه به‌طور کلی به‌صورت تحلیل مطالعه کردند.

۱- مقدمه

ورتکس نیوب دستگاهی است با هندسه‌ی شامله، بدون هچ قسمت متحرک هک قادر است جریان فشار بالا را به دو جریان گرم و سرد تفکیک کند. این بدنه اولین بار توسط رانکو (19) در گزارش توصیف کرده است. تکه‌ی مقطعی این مغناطیسی که گزارتک می‌شود، یک میدان جرخی قوی ایجاد می‌شود. این قطعات در ناحیه ورودی به‌طور توزیع‌یافته در جهت شعاعی جریان می‌شود که در نتیجه یک گرداب آزاد در ناحیه جریان گرم محیطی و یک گرداب جریانی در ناحیه جریان سرد داخلی تولید می‌شود.

شکل ۱ نمای عملکرد یک ورتنکس نیوب را همراه با اجزای آن نشان می‌دهد. پس از آن‌ها رس و هوا (21)، مارینوفسکی و الکسیف (22)، ناگی (23) و اسکای و همکاران (24) بررسی‌های آزمایشگاهی مهمی را را ارائه کرده‌اند. دایسرل و برازیورت (25)، ونگی و گوپوچو (26)، لیمیت و همکاران (27) و استفن و همکاران (28) در این زمینه به‌طور کلی به‌صورت تحلیل مطالعه کردند.

۲- مدل و درمان‌ها‌ی جراح

مدل عدی و معادلات حاکم

مدل عدی مورد بررسی در روی مدل آزمایشگاهی اسکای و همکاران (7) ساخته شده است. این مدل مجزه به ۶ نازل مستقیم ورودی هوا، یک خروجی گرم و یک خروجی سرد است. در این مقاله علاوه بر مدل اسکای و همکاران (7)، ۵ مدل دیگر گفته شده است. اگر جریان محور محسوس و سریال در محل گزارش شده، نشان داده شده است. این مدل‌ها نسبت به راستی ورودی ۷ و در شکل ۳، یک نمونه از مدل‌های دیگر بررسی شده، نشان داده شده است.

شکل ۲ شکل‌نگاری میدان حل برای ورتنکس نیوب در ۶ نازل مستقیم

شکل ۲ شکل‌نگاری میدان حل برای ورتنکس نیوب در ۶ نازل مستقیم

شکل ۲ شکل‌نگاری میدان حل برای ورتنکس نیوب در ۶ نازل مستقیم

شکل ۲ نمای عملکرد یک ورتنکس نیوب را همراه با اجزای آن نشان می‌دهد. پس از آن‌ها رس و هوا (21)، مارینوفسکی و الکسیف (22)، ناگی (23) و اسکای و همکاران (24) بررسی‌های آزمایشگاهی مهمی را را ارائه کرده‌اند. دایسرل و برازیورت (25)، ونگی و گوپوچو (26)، لیمیت و همکاران (27) و استفن و همکاران (28) در این زمینه به‌طور کلی به‌صورت تحلیل مطالعه کردند.
نادر پورهحوود

2. Bar

جدول 1 ابعاد هندسی ورتنکس نیو مدل‌شده

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول لوله (mm)</td>
<td>10.6</td>
</tr>
<tr>
<td>قطر لوله (mm)</td>
<td>11.4</td>
</tr>
<tr>
<td>عمق نازل (mm)</td>
<td>0.27</td>
</tr>
<tr>
<td>بی‌پای نازل (mm)</td>
<td>0.41</td>
</tr>
<tr>
<td>سطح مقطع کلی ورتنکس نازل (mm²)</td>
<td>8.2</td>
</tr>
<tr>
<td>قطر خریدی سرد (mm)</td>
<td>6.2</td>
</tr>
<tr>
<td>سطح مقطع خریدی کرم (mm³)</td>
<td>95</td>
</tr>
</tbody>
</table>

مدل عدید ورتنکس نیو مدل‌شده، با استفاده از بسته نرم‌افزاری Fluent 3- شبیه‌سازی شده است و معادلات بین‌نیوی با استفاده از اک استنادار این برنامه در یک میدان سه‌بعدی تراکم‌پذیر و توربولانس، حل شده‌اند. با توجه به اینکه جریان در ورتنکس نیو به سمت مشقوست اتمابای مدل‌سازی عدید جریان تراکم‌پذیر در ورتنکس نیو، علاوه بر معادلات بکار بردن

\[\frac{\partial}{\partial x_i} \left[\rho u_i \left(h + \frac{1}{2} \mu_j u_j \right) \right] = \frac{\partial}{\partial x_j} \left[k_{eff} \frac{\partial T}{\partial x_j} + u_i \left(\tau_{ij} \right)_{eff} \right] \]

& \[k_{eff} = K + \frac{\kappa \mu}{Pr_t} \] (4)

علاء بر معادلات فوق، با توجه به مدل توربولانس به عنوان گرداگیری حرارتی و توسط مودال‌ها ترکیب‌پذیر و توربولانس در اثر انرژی‌شناور و ناشده‌می‌سهم، نویسندگان سرعت در جریان آشفته تراکم‌پذیر \(k \) است. استفاده دو پارامتر توربولانس به ترتیب \(C_0 \) و \(C_0/2 \) به وسیله توربولانس (\(\mu/u \)) به توجه به مقادیر \(K \) و \(C \) صورت می‌گیرد (7):

\[\mu = \rho C_{\mu} k \frac{r}{\varepsilon} \] (7)

یک ریزی مترازی مسئله بر اساس مدل ترکیبی عاملی می‌شود، بنابراین ورودی را به‌صورت دیگر جریان ورودی (\(\text{Re} \)) می‌داند. برای نظران ویرهای کاری 1/3 (بار) و مقدار سیم وکلر و برای سرعت مایع دوباره به صورت فشار ورودی به مقادیر کلیون و برای سری پیوسته فضای داخلی با مقادیر خورودی و برای سری شرط مرزی فشار نازل، اثربخشانه می‌شود.

\[\frac{\partial}{\partial t} (\rho) + \frac{\partial}{\partial x_j} (\rho u_j) = 0 \]

(1)

\[\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j - \tau_{ij}) = - \frac{\partial p}{\partial x_i} + p \rho T \]

(2)

\[p = \rho R T \]

(3)

1. Fluent

شکل 3 شیک‌کشی میدان حرارت برای ورتنکس نیو دارای نازل‌های با زاویه‌های مختلف
بررسی عددی جدایش انرژی در ورتکس تیوب...

3- بررسی مدل‌های توربولانس

مدل در نظر گرفته شده یک مدل سه‌بعدی چرخشی با تقاضا محوری است که مدل‌های توربولانس کی ایسیولون (κ-ε) و مدل کی اتکا (k-ω) اشاره شده است که در انواع مدل‌های توربولانس در ورتکس پی بیده جدایش انرژی در جریان چرخشی و تراکم‌بندی در ورتکس توب قابل بررسی است. مقایسه نتایج حاصل از مدل‌های عددی حاضر تطبیق خوب

مدل توربولانس k-ε با نتایج آزمایشگاهی نشان می‌دهد. برای مدل‌های مدل‌های گزاره یکی ساده‌ترین تطبیق خوب با نتایج آزمایشگاهی دارد در حالت که نتایج به دست‌آمده برای مدل گاز خروجی سرد (شکل ۴) با مدل‌های گزاره‌ی کم‌توجه‌ی به سطح این نتایج گزاره یکی با مدل‌های مدل‌های گاز خروجی سرد (شکل ۵) با

4- بررسی استقلال نتایج عددی از مشترک‌دی

برای زدودن و کاهش هر گونه خطا به علت درشتی با استفاده از آزمایشگاه‌های میدان سیال و استقلال نتایج تحلیل از تأثیرات مشترک دیده مدل عددی، مدل‌های با تعداد مشترک منفی‌بودن متفاوت برای بررسی تأثیر تعداد مشترک انجام گرفت. برای این کار، مدل ورتکس توب با ۶ نازل مستقیم در نتایج جریم مورد بررسی در شرایط دات و باید بررسی تا ۷۳/۲ در نظر گرفته شد که یک لیست مناسب‌تر مانند داده در خروجی سرد می‌تواند به‌طور کم‌توجه گزاره یکی ساده‌ترین تطبیق خوب با نتایج آزمایشگاهی دارد در حالت که نتایج به دست‌آمده برای مدل گاز خروجی سرد (شکل ۵) با

5- نتایج

برای مدل گاز خروجی سرد (شکل ۵) با

67

1. Cold Mass Fraction

Downloaded from mme.modares.ac.ir at 206 IRST on Saturday December 21st 2019
بررسی عددی جدايش انرژی در ورتکس‌تیوب

نادر پورهحوود و هوکار

68 مهندسی مکانیک مدرس، مهر 2931، دوره 29 شماره 7

شکل 6 مطالعه استقلال از مشینه در بنیی حداقل دمای خروجی سرد

در نتیجه به تغیه به پایان و نابشند تقییسی نتایی که استقلال‌تای تحلیل را از اثرات مشینه‌دی نشان می‌دهد.

برای کاهش زمان محاسبات از همن تعداد عصر استفاده شده است. همچنین برای بررسی مدل‌های دیگر سعی بر استفاده از عصرهای با حجم متوسط عنصرهای مدل بررسی شده برای استقلال از مشینه‌دی شده است.

5- تأثیر زاویه محوری نازل

5-1- دمای خروجی‌های سرد و گرم

بررسی‌های قبیل انجامشده در زمینه شکل نازل‌ها بیان می‌کند که شکل نازل باید به‌گونه‌ای باشد که هوا به‌صورت مماسی وارد محیط‌های چرخش شود تا سرعت چرخش بالاتر و به‌دین آن انتقال موسمت به داخل محیط و میدان سیال بیشتر شود. در این تحقیق علاوه بر نظر گرفتن این نکته، سعی در طراحی یک نوع نازل مناسب به‌دلیل صمیمیتی به‌دین آن انتقال ناحیه برخی از انتهای نازل و ابتدای ورود به محیط‌های چرخش به سمت داخل محیط می‌شود. این امر کاهش دما در خروجی سرد را در پی دارد.

شکل 7 دمای خروجی سرد را در حسب زاویه مختلف نازل به‌باید انتواژ فشارهای ورودی نشان می‌دهد. همان‌طور که مشاهده می‌شود، به‌این‌درجهٔ 40° بن‌شکل دمای خروجی سرد به‌باید انتواژ فشارهای ورودی مختلف (به‌جز فشار کاری اسکای و همکاران (1) یعنی 48/بار) به‌دلیل مشاهده می‌شود. این‌افزایش فشار ورودی در هم‌انواع نازل‌ها، کاهش دما به‌صورت یک‌نوخت مشاهده می‌شود.

شکل 8 دمای خروجی گرم به‌باید انتواژ فشارهای ورودی و زاویه‌ی نازل مختلف

شکل 9 دمای خروجی سرد به‌باید انتواژ فشارهای ورودی و زاویه‌ی نازل مختلف
بررسی عددی جدایش انرژی در ورتنکس تیوب

نادر پورهحوود و هوکار ای

مهندسی مکانیک مدرس، مهر 2931، دوره 29 شماره 7

همان طور که در شکل ۷ مشاهده می‌شود، برای زاویه ۱۰ درجه دمای خروجی سرد نسبت به زاویه ۸ درجه روند نزولی دارد. لذا برای بررسی اینکن آیا با افزایش زاویه به مقادیر بیش از ۱۰ درجه می‌توان به دمای سردی درست یافت زاویه ۱۲ درجه مورد مطالعه قرار گرفت و در نسبت خروجی ۲/۳ دیپ جرمی ورودی ۲/۳ کرم بر نامه و فشار ۴/۸ برای جریان سیال ورودی، دمای هیدری سرد و گرم دستگاه به ترتیب ۲۵۲/۳ کلمی و ۲۳۲/۳ کلوین خواهد بود. اما اینچه در این مورد قابل بود است ایجاد جریان بارغشته در روند حلقه مناسب است. پدیده ایجاد جریان بارگشته در حل عددی مساله‌های مربوط به دستگاه ورتنکس تیوب بسیار مشاهده می‌شود. اسکای و همکارانش [۱۷] نیز در مقاله خود وجود جریان بارگشته را گزارش دامنه. جریان بارگشته با ایجاد تغییر و درگذشته فلزی جریان در نزدیکی خروجی سرد و در به دلیل ایجاد اختلافات افزایش دما، جریان خروجی و در نتیجه کاهش جداسازی در خروجی سرد خواهد شد. در حالی که علمک مطلق در ورتنکس تیوب بستگی به دمای پایین در خروجی سرد است. در ناحیه مبین ارتفاع خروجی سرد، جهت جریان به طرف داخل است. در حالی که در کنارها جهت جریان به طرف خارج است. این مشابه باعث راندمدن جریان جداسازه سرد به طرف داخل ورتنکس تیوب و اختلاط جریان گرم به سرد شده و تندیجه با صورت افزایش می‌گردد در خروجی سرد خود را نشان خواهد داد. شکل ۹ شماتیک خطوط جریان بر حسب سرعت محروری در خروجی سرد ورتنکس تیوب نشان می‌دهد.

![شکل ۹ بیضی جریان بارگشته برای مدل با زاویه ۱۲۳° ۱۸۳۵/۷ ۶۹]

1. Subsonic
2. Supersonic
3. Shock

۷ مهر ۱۳۹۲ دوره ۱۲ شماره ۸
بررسی عددی جدایش انرژی در ورتنک تیوب

نادر پورهحوود

و همکاران

کم و قابل صرف نظر کردن است، لذا با مقایسه همزمان نمودارهای سرعت چرخشی و پروفس دمای کل می‌توان دید که ناحیه با دمای پایین‌تر سرد متغیر بر ناحیه با سرعت چرخشی پایین‌تر یا همان‌هندسه مرکزی ورتنک تیوب است. علاوه بر این مشاهده می‌شود که مقادیر سرعت‌های چرخشی برای دو حالت بدون زاوه و زاوه ۴ درجه تغییر محسوسی ندارند.

شکل 11 کانتور توزیع عدد میان در محفظه چرخشی β°=۴°

از دیگر مزایای ایجاد زاوه محوری، کاهش فشار در پای‌نالزل یا تریپ در اثر زاوه دادن به آنها است. در شکل‌های ۱۲-الف و ۱۲-ب مقادیر کل دخل محفظه در حالتهای صفر و چهاردرجه انجام شده است.

مشاهده می‌شود که با ایجاد زاوه در پای‌نالزل یا تریپ، فشار کل ماکزیمم در پای‌نالزل از محدوده ۴۲۸۰۰ تا ۵۵۰۰ تا ۴۲۷۷۰ پاسکال به محدوده ۴۵۲۰۰ تا ۴۵۲۰۰ پاسکال کاهش می‌یابد. این کاهش فشار در پای‌نالزل یا تریپ، کاهش عدد ماخ در محفظه چرخشی و در نتیجه یک‌نواخت ره‌دیگر جریان در ناحیه خروجی سرد را در پی خواهد داشت.

شکل ۱۳ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

شکل ۱۳ توزیع دمای کل در سرتاب‌ورتنک تیوب، β°=۰°

شکل ۱۳ توزیع دمای کل در سرتاب‌ورتنک تیوب، β°=۴°

شکل ۱۳ توزیع دمای کل در سرتاب‌ورتنک تیوب، β°=۶°

1. Swirl Velocity

شکل ۱۳ توزیع دمای کل در سرتاب‌ورتنک تیوب، β°=۶°

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی

شکل ۱۱ توزیع فشار کل در سرتاب‌ورتنک تیوب، β°=۰°

کانتورهای دمای و سرعت‌های چرخشی
بررسی عددی جدایش انرژی در ورتکس تیوب

نادر پورهحوود و هوکار

مهندسی مکانیک مدرس، مهر 2931، دوره 29، شماره 7/71

شکل 14-الف- تغییرات سرعت چرخشی در راستای شعاعی در مقاطع طولی مختلف، \(\beta = 45^\circ \)

شکل 14-ب- تغییرات سرعت چرخشی در راستای شعاعی در مقاطع طولی مختلف، \(\beta = 60^\circ \)

شکل 15- خطوط مسری برای انرژه‌هایی از سیال بر حسب دامای کل برای ورتکس تیوب با \(\beta = 45^\circ \)

شکل 16- گرافیک تغییرات سرعت چرخشی در راستای شعاعی در مقاطع طولی مختلف، \(\beta = 45^\circ \)
بررسی عددی جدایی انرژی در ورتنکس تیوب...

نادر پورهحوود و هوکار.

لذا با نظر گرفتن این امر اکت جریان سری می‌باشد در جهت حرکت به سمت خروجی سرد کاهش می‌یابد و این کاهش شناسند. در اینجا می‌توانیم نژادی که هر چه میزان این بافت شفاف بیشتر باشد جرنیان خروجی سرد دمای پایین‌تر خواهد داشت. برای این میزان کاهش شفاف جرنیان سرد، پرامتری یعنی تیغ تعیین شده بود که به‌صورت حسابی اختلاف فاز‌ها می‌باشد. می‌تواند در حرارت این دو نقطه است و به‌صورت زیر بیان می‌شود:

\[\xi = \frac{\Delta P}{\Delta z} = \frac{(P_{\text{max}} - P_{\text{min}})}{(Z_{\text{max}} - Z_{\text{min}})} \]

(8)

محاسبات نشان داده است که هر چه میزان این پرمارتر بیشتر باشد دمای خروجی سرد تغییر یافته‌ای در دامنه‌ای که در جدول ۲ نشان داده شده است.

شناخته می‌شود که برای حالت دو برون رایه مقیار \(Z \) از حالت‌های دیگر پیش‌آمده است و متناظر با آن دمای خروجی سرد تغییر یافته‌ای در حالت ۱ و ۲ وجود ندارد. مقدار پیش‌آمده در دامنه‌ای که در جدول ۱ نشان داده شده است سری‌الا۱/۴ برابر از جدول ۲ نشان داده شده است.

پرمارتر در کنترل دمای خروجی سرد و گرم است.

برای مقایسه استفاده از نسبت‌های سرد حذف ۱۳ عای جدایی بالاتری در خروجی سرد و پیشنهاد می‌باشد.

در این مطالعه با استفاده از نرم‌افزار فلورنت و روش حجم محضو به مدل‌سازی پدیده جدایی انرژی در ورتنکس تیوب پرداخته شد.

جدول ۲ مقادیر فشار کل حداکثر و حداکثر جریان سرد و فاصله آنها از خروجی سرد

<table>
<thead>
<tr>
<th>(Z_{\text{max}} - Z_{\text{min}})</th>
<th>(P_{\text{min}})</th>
<th>(P_{\text{max}})</th>
<th>(\xi)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/04</td>
<td>0/41</td>
<td>0/36</td>
<td>0/555</td>
<td>0</td>
</tr>
<tr>
<td>8/6</td>
<td>11/24</td>
<td>8/75</td>
<td>0/538</td>
<td>2</td>
</tr>
<tr>
<td>8/24</td>
<td>11/38</td>
<td>8/63</td>
<td>0/531</td>
<td>4</td>
</tr>
<tr>
<td>10/03</td>
<td>11/94</td>
<td>10/45</td>
<td>0/525</td>
<td>6</td>
</tr>
<tr>
<td>9/30</td>
<td>11/91</td>
<td>9/75</td>
<td>0/514</td>
<td>8</td>
</tr>
<tr>
<td>7/96</td>
<td>11/39</td>
<td>7/60</td>
<td>0/508</td>
<td>10</td>
</tr>
</tbody>
</table>