Abstract- The present study proposes an analytical solution for the axisymmetric/asymmetric buckling analysis of thin circular/annular nanoplates under uniform radial compressive in-plane load. In order to consider small scale effects, nonlocal elasticity theory of Eringen is employed. To ensure the efficiency and stability of the present methodology, the results are compared with other presented in literature. Material properties including Young’s modulus, density, Poisson’s ratio are assumed to be constant throughout the body of the nanoplate. In addition, the effect of small scales on critical buckling loads for different parameters such as radius of the nanoplate, boundary condition, mode number and geometry parameters are investigated. In order to obtain the critical buckling load, the asymmetric modes as well as axisymmetric modes are considered. The thin nanoplate is modeled using Kirchhoff plate theory.

Keywords: Nanoplate, Buckling, Nonlocal, Analytical solution, Kirchhoff
1- مقدمه

2- نتوری غیرمحلی

نتوری غیرمحلی ارزیگی تهیه در کنار نقطه‌ای حاصل دارد. براساس این نتوری

4. Pasternak

1. Green function
2. Dispersion curves
3. Lattice dynamics
معادله ابتدایی نانوروق

برای بیان اوردون انرژی پتاسیلی کل نانوروق، انرژی کراتس با انرژی پتاسیلی ناشی از بارهای خارجی به فرم زیر جمع می‌شود:

\[V = \Omega + U \]

(20)

که انرژی کراتسی در فرم غیرمحالی به فرم زیر است:

\[U = \frac{1}{2} \int_{+\delta}^{+\delta} \left(\sum_{r=1}^{N} \sum_{i,j} \left(t_{r_i} E_{r_i} + t_{r_j} E_{r_j} + t_{r_i, r_j} E_{r_i, r_j} \right) \right) \sin d\theta d\theta \]

(21)

و انرژی پتاسیلی ناشی از بارهای خارجی به فرم زیر:

\[\Omega = \frac{N}{h} \int_{r_0}^{R} \left(\frac{\partial n}{\partial r} + \frac{\partial w}{\partial \theta} \right) \sin d\theta d\theta \]

(22)

درنتیجه مدل‌های نیرو و ممان به فرم زبر به دست می‌آید:

\[N_r = N_r^0 + N_r^1, \quad M_r = M_r^0 + M_r^1 \]

(23)

\[N_\theta = N_\theta^0 + N_\theta^1, \quad M_\theta = M_\theta^0 + M_\theta^1 \]

(24)

\[N_r = N_r^0 + N_r^1, \quad M_r = M_r^0 + M_r^1 \]

(25)

\[N_\theta = N_\theta^0 + N_\theta^1, \quad M_\theta = M_\theta^0 + M_\theta^1 \]

(26)

در مرجع (24) انجام شده است، به فرم زبر به دست می‌آید:

\[\frac{\partial N_r}{\partial r} + \frac{\partial N_r}{\partial \theta} + \frac{N_r - N_\theta}{r} = 0 \]

(27)

\[\frac{\partial N_\theta}{\partial r} + \frac{\partial N_\theta}{\partial \theta} + \frac{2 N_r}{r} = 0 \]

(28)

\[\frac{\partial^2 M_r}{\partial r^2} + \frac{2}{r} \frac{\partial M_r}{\partial r} + \frac{1}{r} \frac{\partial^2 M_\theta}{\partial \theta^2} - \frac{1}{r^2} \frac{\partial M_\theta}{\partial r} + \frac{2}{r^2} \frac{\partial^2 M_\theta}{\partial \theta^2} - \frac{\partial \tilde{V}_r}{\partial \phi} = 0 \]

(29)

که در این روابط مدل‌های نانوروق به فرم زبر به دست می‌آید:

\[N_r, M_r (i = r, \theta, \phi) \]

(30)

که در این روابط مدل‌های نانوروق به فرم زبر به دست می‌آید:

\[N_r, M_r (i = r, \theta, \phi) \]

(31)

که در این روابط مدل‌های نانوروق به فرم زبر به دست می‌آید:

\[N_r, M_r (i = r, \theta, \phi) \]

(32)

که در این روابط مدل‌های نانوروق به فرم زبر به دست می‌آید:

\[N_r, M_r (i = r, \theta, \phi) \]

(33)
کمیان متقابل و نامتقابLNانارورق‌های دایری و حلقوی در

4- نتایج عددي

باعث سادگی رو شرافتگاری، به‌دست آوردن بر کمکی در
هر شرایط تکیه‌گاهی (با سری‌های ادراری و حلقوی) با شرایط تکیه‌گاهی و
مده‌های متغیر است و برای بررسی قرار می‌گیرد و این واقعیت از رابطه
عواملی ساخته گردند که بر روی مقدار دقیق پراستی و تکیه‌گاهی در
استفاده از طرح‌های اندازه‌گیری و ترکیب گیرنده و از طرفی
منبع بی‌پوش و جامد مقدار دقیق یا برای شرایط
درک‌شده‌های زیرکی‌گرد نکته است و مقدار این پراستی در پی
محاسبه‌کردن صفر تا 2mm^2 در نظر گرفته شده است [21].

شایان ذکر است که هر نارورق حلقوی با دو علت مشابه داده می‌شود که در پی شرایط مزیت و شرایط
کمکی‌گاه گیرنده در طول شعاع داخلی و خارجی مشاهده می‌کند. برای مثال نارورق حلقوی است
که دارای شرایط تکیه‌گاه به‌دست آورده در طول شعاع داخلی و شرایط
کمکی‌گاه گیرنده در طول شعاع خارجی است. در صورتی که
اطلاعاتی نظیر شعاع خارجی R, شرایط تکیه‌گاه با این شرایط مشابه داده شده است با توجه به
بطریبی به‌صورت 10 و 0.5 mm نارورق حلقوی با شرایط C–C
در نظر گرفته می‌شود.

همچنین برای اثبات درستی نتایج برای نارورق‌های
حلقوی در شکل 2 باره کمکی، برای برای نارورق‌های
با شرایط تکیه‌گاهی S–S و شعاع خارجی و داخلی
بطریبی 20 و 10 نانومتر با داده‌های ارائه‌شده در منبع [22] مقایسه شده است.

$$v_o = Ne/Eh$$ (36)

$$D = Eh^3/(1-v^2)$$ (12)

$$\bar{w} = \frac{w}{r_o}, \quad r = \frac{r}{r_o}, \quad z = \frac{z}{h}, \quad \bar{D} = \frac{D}{Eh^3}$$ (28)

$$\left(\frac{\bar{D}}{r_o^2} \right) \Delta \bar{w}^2 + \bar{N} \Delta \bar{w} = 0$$ (29)

$$\left(\frac{\bar{D}}{r_o^2} \right) \Delta \bar{w}^2 + \bar{N} \Delta \bar{w} = 0, \quad \Delta \bar{w} = 0.$$ (30)

$$w_i = A_i r^p \cos (p \theta) + A_i \left(\log r \right) r^{p-1} \cos (p \theta)$$ (31)

$$w_z = A_z \left(\delta_i r^p \right) \cos (p \theta) + A_y \left(\delta_i \right) r^{p-1} \cos (p \theta)$$ (32)

$$\delta_i = \frac{N}{D} - \frac{\bar{N} \mu}{r_o^2}$$ (33)

$$\bar{N} = \frac{Ne^2}{Eh^3}$$ (34)

$$\bar{D} = \frac{\bar{D}}{r_o^2}$$ (35)

$$[H]_{4 \times 4} \{\Gamma\}_{4 \times 1} = \{0\}_{4 \times 1}$$ (36)

$$H = [H]_{4 \times 4}$$ (37)

1. Buckling strain
جدول 1 مقایسه کنش کامنشی برای نانوپوش از مولکول‌های اپوتروپیک دایروی با شرایط مرزی نکب‌گردا (h/20 = 0.35)

<table>
<thead>
<tr>
<th>شرایط مرزی نکب‌گردا (h/20)</th>
<th>μ (nm)</th>
<th>α (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

شکل 2 مقایسه بهره‌های کامنشی برای نانوپوش‌های S-S و C-C با منبع [22]

شکل 4 تغییرات بر کامنشی متقارن و غیرمتقارن با پرامتر غیرملحه

شکل 3 تغییرات بر کامنشی متقارن و نامتقارن با شعاع خارجی نانوپوش (نانوپوش دایروی با لبه گردی)

شکل 4-2 دانشی‌پوش غیرملحه و شرایط تک‌گاهی

تأثیر پرامتر غیرملحه بی‌سترشدن شرایط تک‌گاهی از افزایش مناسب می‌باشد. با افزایش دیگر، همان‌گونه که از شکل ۴ می‌توان چیده که در شرایط تک‌گاهی، مقدار پرامتر غیرملحه برای کامنشی مستقل از نوع نامتقارن بی‌سترشین و برای S-S کمترین مقدار را داده.

جدول 2 مقایسه کنش کامنشی برای نانوپوش‌های S-S و C-C و با منبع [22]
نتایج نشان داده شده در شکل ۴ در موقعیت نخست نکته‌ای به‌روز می‌شود که قدام بیشتری دارند و نیازی ندارند تاثیر قرار می‌دهد. نتایج
بازارهای بحرانی ناپاسخ‌هایی با شرایط تک‌گاهی سفت‌تر، با
افزایش پارامتر عضو‌محیط، کاهش بیشتری می‌یابد.

۴-۳-اثر پارامتر عضو‌محیط و مقدار کمده

اثر پارامتر عضو‌محیط، با بالاترین مد کشش بیشتر می‌شود،
به‌عنوان یکی از پارامتر عضو‌محیطی کمده‌ای به‌مقدار
بیشتری کمک می‌کند. این نکته‌ای به‌روز می‌شود در
شکل ۵ مشاهده شد. دلیل افزایش اثر پارامتر عضو‌محیط
بازارهای بحرانی را می‌توان با این نکته مشخص دانست که در
طول موج‌های کوچکتر (مدت‌های بالاتر) کاهش و واکنش میان
امکان‌های بازی و پیوستگی تاثیر پارامتر
عضو‌محیط در مدت‌های کم‌دازه بازی بازی می‌گردد. شایان ذکر است،
بنابراین می‌توان با این شکل برای مدیریت اختلاف مدت‌های
بازارهای بحرانی با نتایج ایرانی و نمایندگی کم‌دازه.

۴-۴-اثر پارامتر عضو‌محیط و نسبت R

در شکل ۶ تغییرات به‌روز مقدار و نسبت‌های کم‌دازه برای
نسبت‌های مختلف ضخامت بر شعاع خارجی، ۳، ارائه شده
است. همچنین که از این شکل قابل ملاحظه است، تغییرات
این نسبت بر اثر کاهش‌گردی پارامتر عضو‌محیط تاثیر
جنگ‌دار در موقعیت نخست بایستی ماند و پارامتر شعاع خارجی
ناپاسخ است اما از نظری که افزایش و کاهش نسبت ضخامت
به شعاع خارجی در باره کوچکی انجام می‌شود، باید این
پارامتر تاثیر جدی‌تری در به‌روز مدت‌های نخواهد داشت.

R، ۴-۵-اثر پارامتر عضو‌محیط و نسبت R

عامل دیگری که در تعیین مدت‌های بازی نمایندگی کم‌دازه
سنتی و داخلی به‌روز است. R، ۴-۵-اثر پارامتر عضو‌محیط و
همان طور که از شکل ۷ مشخص است، در مقایسه کم‌یابی بازی بحرانی
کم‌دازه ناپاسخ‌های سفت‌تر همچنین، که به‌روز می‌شود
از این شکل می‌توان مشاهده نمود این نکته که تاثیر پارامتر
عضو‌محیط بر روی بازی ناپاسخ‌های بیشتری و بالاتر می‌باشد و با کاهش نسبت شعاع‌های اثر این پارامتر کاهش می‌یابد.

[16] Farajpour A., Shahidi A. R., Mohammadi M., Mohzoon M., “Buckling of Orthotropic Micro/Nanoscale Plates under Linearly Varying In-

