Estimation of natural frequencies using mass-cancellation method in operational modal testing

Mohammad Mahdi Khatibi¹, Mohammad Reza Ashory²

¹ - Department of Mechanical Engineering, Semnan Univ., Semnan, Iran
² - Department of Mechanical Engineering, Tehran Univ., Tehran, Iran
* P.O.B. 35195363 Semnan, Iran, m_asghoori@semnan.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 10 November 2013
Accepted 05 February 2014
Available Online 21 September 2014

Keywords:
Natural Frequencies
Mass-loading Effect of Accelerometer
Operational Modal Analysis

ABSTRACT

Conventional modal testing is known as a powerful tool for dynamic analysis of structures. However, for some engineering structures, conventional modal testing is difficult or even impossible to conduct due to the problems associated with the artificial excitation of structure. Operational Modal Analysis (OMA) is one solution to deal with these cases. In OMA the structure is excited by ambient forces and only the responses are measured and taken into account. Accelerometers are the traditional tools for measuring the responses of structure. It is well known that the measured responses are contaminated by bias errors corresponding to the mass-loading effect of accelerometers. This causes the natural frequencies of structure are measured lower than the real values. In this paper a new method is proposed for eliminating the mass-loading effects of accelerometers from measured responses in OMA. A numerical model of a mass-spring-damper system is used for validation of the method. Also a steel plate is used for experimental validation of the proposed approach. The results are confirmed by those of conventional modal testing. Both numerical and experimental results show that the proposed method can effectively eliminate the mass-loading effects of accelerometers from measured responses in OMA. Also, the method has the ability to correct the measured natural frequencies from OMA accurately.

1 - مقدمه

ومداد مولال روشن تجربه در بال مدل کردن فرمول دینامیکی سازه و
شناسی رفتار ارتقاء سازه از طریق انتقالگری است از آنجا که در
آزمایش فرایند اندازه باره سازه در نظر گرفته می‌باشند، بایان‌بندی نتایج قابل
اعتماد دیگری نیست به حالی عده مدل اجزای محدود باست

2 - مقاله

منابع

3-Operational Modal Analysis (OMA)
4-Scaling Factor

2- روش بسته‌های تحت‌درد

همان‌طور که در مقدمه بیان شد، روش‌هایی که تاکنون برای حذف اجزای پرده به کار رفته بودند، بر اساس اجزای پلاریستیک قابل استفاده‌اند. زیرا بهترین استفاده از پلاریستیک عمل می‌کنند، اگر (14) نباشد برای استفاده گرایش فرکانسی و تغییرات وابسته به شکل می‌باشد. این گرایش فرکانسی می‌بایست بتواند نسبت به (11) محاسبه شود.

\[
\Delta T = \frac{\ln(\mu)}{\omega_0}
\]

در جمله ۸ برای حذف اجزای پرده شکل می‌باشد.

d\theta = C [\phi]
\]

در جمله ۷ بنابراین تعداد محاسبه شکل فرکانسی.

\[
\phi = [\omega_0, \omega_1, \ldots, \omega_n, \theta_0, \theta_1, \ldots, \theta_n]^T
\]

در جمله ۱۰ محاسبه شکل فرکانسی.

\[
\phi = C [\mu, \mu_0, \ldots, \mu_n, \omega_0, \omega_1, \ldots, \omega_n, \theta_0, \theta_1, \ldots, \theta_n]^T
\]

در جمله ۱۱ محاسبه شکل می‌باشد.

\[
T_{1} = \sum_{k=0}^{N} y_{k+1} y_{k}^T \frac{N}{N-1}
\]

در جمله ۱۹ محاسبه شکل می‌باشد.

\[
T_{1} = USV^T
\]

در جمله ۲۰ محاسبه شکل می‌باشد.

\[
\text{Degree of Freedom} = 2 \times \text{Toeplitz} + 3 \times \text{Transpose} + 4 \times \text{SVD} + 5 \times \text{Extended Observability Matrix} + 6 \times \text{Reversal Extended Stochastic Controllability Matrix}
\]

7- Stabilization Diagram
که در این شکل نام برای پای خاکه اندازه‌گیری شده است.

اگر بخواهید، می‌توانید برای پای خاکه این شکل را در نقطه آرزویی، بر روی سازه قرار دهید.

\[
A_{ij}^{(1)} = \frac{A_{ij}}{1 + m A_{ij}}
\]

\[
A_{ij}^{(l)} = \frac{A_{ij}}{1 + m A_{ij}}
\]

\[
R_m = \frac{1}{m \omega^2}
\]

\[
X_i = \frac{a_{ij} F_i}{\omega^2} + a_{ij} R_j
\]

\[
\alpha_{ij}^{(l)} = \frac{\alpha_{ij}}{\alpha_{mm} + \alpha_{jj}}
\]

\[
A_{ij}^{(l)} = A_{ij} - \frac{A_{ij} A_{ij}}{A_{mm} + A_{jj}}
\]

1. Receptance
2. Accelerance
کمک رابطه (22) محاسبه کرده است. با استفاده از این نتایج پایان فراکانزی و به کمک رابطه (20) می‌توان نتایج پایان فراکانزی اصلاح شده را بدست آورد و فراکانزی طبیعی را اصلاح نمود در نتیجه می‌توان الگوریتم کلی روش جدید را بصورت زیر بیان نمود.

1. از ارایز مدل محیط زیست و در این آزمایش تعادل شانسی بر روی زمین نصب شده است.

2. محاسبه پارامترهای مدل به کمک نکات پایش از 1

3. نتایج پارامترهای نده در محل نکات پیکی با جرم اضافی.

4. نتایج کاهش مدلی با جرم اضافی در مدلی با جرم اضافی

5. محاسبه پارامترهای مدل جدید به کمک نکات پایش از 4

6. محاسبه ضرایب میزان اصلی شکل مدولی به کمک رابطه (25) و

7. محاسبه نبنا پایان فراکانزی با استفاده از پارامترهای مدولی (بند 2 و

8. محاسبه نبنا پایان فراکانزی اصلاح شده با استفاده از نتایج پایان فراکانزی

9. محاسبه نبنا پایان فراکانزی اصلاح شده به بند 7 (بند 20).

بر اساس نتایج پایان فراکانزی، شیب با هر یک از شیب‌های مناسب و پیش‌بینی شده است. این ضرایب نباید از اندازه‌گیری خودکار در طراحی مدلی با جرم اضافی استفاده شود.

شیب‌سازی

- 3.3 - مدل عددهای محاسبه شده در بخش اول

دیمینگ سیستم

سوزنی سیستم در نظر گرفته شده است. در مدل 1، مدل 2 و مدل 3 از استفاده مدل‌های دیمینگی تخصصی استفاده گردیده است. در مدل 4، انجام پیمایش بر روی سیستم به کمک نکات پایش از جدول 3 انجام شده است.

جدول 1

<table>
<thead>
<tr>
<th>شماره</th>
<th>مقدار جرم (kg)</th>
<th>ضرب دینامیک</th>
<th>سوزنی سیستم</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>100000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.131</td>
<td>100100</td>
<td>2/3</td>
<td>2</td>
</tr>
<tr>
<td>0.190</td>
<td>100200</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0.236</td>
<td>100300</td>
<td>1/3</td>
<td>4</td>
</tr>
<tr>
<td>0.283</td>
<td>100400</td>
<td>1/4</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>100500</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

شکل 3

نوشته شده است (رابطه 26).

\[
\begin{align*}
\alpha_1^2 A_1 (a_1) + \alpha_2^2 A_2 (a_2) - \beta_1^2 B_1 (a_1) - \beta_2^2 B_2 (a_2) &= \\
- \alpha_1^2 \left(m' - m \right) (\alpha_1^2 A_1 (a_1) + \alpha_2^2 A_2 (a_2)) &
\end{align*}
\]

(26) با سادسازی رابطه (26) و تقسیم طرفین این رابطه بر \(\beta_1^2 \) بدست می‌آید.

\[
\begin{align*}
\frac{\alpha_1^2 A_1 (a_1) + \alpha_2^2 A_2 (a_2)}{\beta_1^2 B_1 (a_1)} + \frac{\alpha_1^2 A_1 (a_1) + \alpha_2^2 A_2 (a_2)}{\beta_2^2 B_2 (a_2)} &= \frac{B_1 (a_1)}{B_2 (a_2)}
\end{align*}
\]

(27) که در رابطه (28) تعیین می‌شود

\[M = (m' - m) \]

(28) در رابطه (27)، ضرایب \(\alpha_1^2 \) و \(\alpha_2^2 \) به‌طور مستقل می‌باشند. این رابطه (27) برای تعیین نمایندگان مدلی است. می‌توان این اجراهای دسته‌بندی مدل همگونی مدل‌ها را شکل‌دهی می‌دهد.

مقدار مجهول و محاسبه

\[
\begin{bmatrix}
\alpha_1^2 \\
\alpha_2^2 \\
\beta_1^2 \\
\beta_2^2 \\
\end{bmatrix}
\]

(29)

تعداد نما پارامتریک

\[
\begin{bmatrix}
C_1(a_1) & C_2(a_2) & \cdots & C_p(a_1) & C_p(a_2) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_1(a_p) & C_2(a_p) & \cdots & C_p(a_1) & C_p(a_2)
\end{bmatrix}
\]

(30)

مقدار از رابطه (31)

\[
C_1(a) - A_1(a), \quad C_2(a) - A_2(a), \quad C_3(a) = -B_2(a)
\]

(31) همانطور که اشاره شده بود در این رابطه (25) این رابطه برای دو مدل تدوین شده و در نهایت دسته‌بندی مدل‌های مقطعی رابطه (29) بدست می‌آید. با حل این دستگاه، ضرایب مجهول از رابطه (27)، محصولاً \(\alpha_1^2 \) و \(\alpha_2^2 \) بدست می‌آید. بدست آمده از این دو ضریب می‌توان نتایج از این محاسبه را به کمک روش حذف از مدل موصل معنی‌داری در آزمایش مدول موصلی تبادلی و به‌طور کلی شامل تبدیل پایان بود.
جدول 8 مقایسه فرکانس‌های طبیعی دقيق و اصلاح شده

<table>
<thead>
<tr>
<th>فرکانس طبیعی دقيق (آزادان بر ناپاب)</th>
<th>شماره مود</th>
<th>فرکانس طبیعی اصلاح شده (آزادان بر ناپاب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>148.84</td>
<td>1</td>
<td>148.89</td>
</tr>
<tr>
<td>261.46</td>
<td>2</td>
<td>261.53</td>
</tr>
<tr>
<td>380.07</td>
<td>3</td>
<td>380.03</td>
</tr>
<tr>
<td>472.56</td>
<td>4</td>
<td>472.63</td>
</tr>
<tr>
<td>572.33</td>
<td>5</td>
<td>572.42</td>
</tr>
</tbody>
</table>

در ادامه، به عنوان نمونه تابع پایین فرکانس‌های نقاط اولیه ماده و ناب از آن بررسی شد. با مقدار دقیق اصلی بدست آمده، با مقدار دقیق اصلاح شده، ما می‌توانیم از ارایه‌های همبند بهره‌مندی از این داده‌ها استفاده کنیم. مقایسه نشان می‌دهد که مدل تناسب گنتی با پایین پایین پایین نرمال دارد. این نتیجه فرکانس‌های اصلاح شده، با پایین پایین نرمال توانایی بالاتری در توانایی اصلاح دارد.

جدول 5 فرکانس‌های طبیعی (آزادان بر ناپاب) حاصل از روش SSI-COV (پایین نرمال توانایی اصلاح دارد)

<table>
<thead>
<tr>
<th>جرم اضافی (س)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

مراجع:
1. Point FRF

- 4- آزمایش
 به‌منظور ارزیابی تطبیقی، بررسی‌های نهایی توانایی اندر

جدول 7 مقایسه فرکانس‌های نقطه‌ای (آزادان بر ناپاب) حاصل از ارایه روش انتخاب فرکانس بر

<table>
<thead>
<tr>
<th>جرم اضافی (س)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

ملاحظه: مکانیک محور آزادان، آی.1393.14. شماره 8
4-1 تغییر اثر یپارتمهای مودال دقیق سازه
برای تغییر یپارتمهای مودال سازه به ظور دقیق، یک شناسنیس سبک (۶) بر روی روش نمونه‌برداری ورودی به این روش برای تغییر و سیگال نور از طریق تقویت کننده ۲۴ میلی هرتز، می‌باشد. پس از اندازه‌گیری تغییر و توانایی بایستی از این روش‌ها به طور کامل به شرایط و توضیحات آنها پرداخته می‌شود.

۴-۲ تغییر یپارتمهای مودال دقیق سازه
از آنجا که در یپارتمهای مودال محیطی قدیمی شناسنیس ۵ بر روی راه نصب می‌شود، بنابراین در این روش به منظور تغییر تغییر که در یپارتمهای مودال محیطی نصب می‌شود، این شرایط‌ها به شرایط یپارتمهای مودال محیطی شناسنیس ۵ بر روی راه نصب می‌شود. و در این روش، برای مشاهده نتایج با نتایج یپارتمهای مودال محیطی ۸ شناسنیس هر یک به وسیله ۱۸ کروم بر روی نمونه نصب شده‌اند (شکل ۲).

به منظور انجام یپارتمهای موسیقی، شرایط توسط یک چکنگ نیز بر روی راه نصب می‌شود. لازم به ذکر است که برای DJB/A120V، تغییر در نظر گرفته شده ۵۰۰ میلی هرتز نیاز می‌باشد، لازم به ذکر است که برای یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ نمونه‌برداری شتاب شده و شرایط یپارتمهای گیرش در شرایط شناسنیس، پاسخ N

جدول 10 پارامترهای موسیقی حاصل از یپارتمهای مودال کلاسیک به شناسنیس

<table>
<thead>
<tr>
<th>شماره موسیقی فرکانس (Hz)</th>
<th>ضریب دمیدیگر %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/315</td>
<td>67/25</td>
</tr>
<tr>
<td>0/350</td>
<td>89/34</td>
</tr>
<tr>
<td>0/395</td>
<td>136/52</td>
</tr>
<tr>
<td>0/200</td>
<td>162/74</td>
</tr>
<tr>
<td>0/205</td>
<td>188/79</td>
</tr>
</tbody>
</table>

جدول 10 پارامترهای موسیقی حاصل از یپارتمهای مودال کلاسیک به شناسنیس

<table>
<thead>
<tr>
<th>شماره موسیقی فرکانس (Hz)</th>
<th>ضریب دمیدیگر %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/315</td>
<td>67/25</td>
</tr>
<tr>
<td>0/350</td>
<td>89/34</td>
</tr>
<tr>
<td>0/395</td>
<td>136/52</td>
</tr>
<tr>
<td>0/200</td>
<td>162/74</td>
</tr>
<tr>
<td>0/205</td>
<td>188/79</td>
</tr>
</tbody>
</table>

1- Frequency Response Functions (FRFs)
2- Coherence Functions
جدول 12 مقایسه جرخه اتفاقی شده بر روی سازه

<table>
<thead>
<tr>
<th>شماره جرم</th>
<th>جرم اصلی(ب)</th>
<th>جرم اصلی(ب)</th>
<th>جرم اصلی(ب)</th>
<th>جرم اصلی(ب)</th>
<th>جرم اصلی(ب)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0/343</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0/3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0/093</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0/055</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0/093</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

جدول 13 مقایسه فرکانس‌های تبیینی (هرتز) مربوط به جرم اتفاقی

<table>
<thead>
<tr>
<th>شماره جرم</th>
<th>فرکانس (هرتز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>157.71</td>
</tr>
<tr>
<td>0/343</td>
<td>154.14</td>
</tr>
<tr>
<td>0/3</td>
<td>154.52</td>
</tr>
<tr>
<td>0/093</td>
<td>156.66</td>
</tr>
<tr>
<td>0/055</td>
<td>158.61</td>
</tr>
</tbody>
</table>

جدول 14 مقایسه فرکانس‌های تبیینی (هرتز) مربوط به جرم اتفاقی

<table>
<thead>
<tr>
<th>شماره جرم</th>
<th>فرکانس (هرتز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>157.71</td>
</tr>
<tr>
<td>0/343</td>
<td>154.14</td>
</tr>
<tr>
<td>0/3</td>
<td>154.52</td>
</tr>
<tr>
<td>0/093</td>
<td>156.66</td>
</tr>
<tr>
<td>0/055</td>
<td>158.61</td>
</tr>
</tbody>
</table>

 услов: 64-94 نتایج بدست آمدن جدول 11 نشان می‌دهد که فرکانس‌های تبیینی

به‌منظور اتمام آزمایش‌های مودال محیطی با مقایسه حاصل از

آزمایش‌های تبیینی (جدول 11)، نشان داد که جرم تابع‌سرهای اصلی

شده بر روی سازه موجب کاهش افزایش فرکانس‌های تبیینی شده است. بازار

به منظور حذف اثر جرخه تبیینی (هرتز) به مقداری برابر خود

حریق اثر جرخه تبیینی در 8 مدل مورد مورد احتیاط بر روی

اکثریت از 15 مدل مورد محیطی به سه مدل اصلی و 14 مدل

محیطی، به‌صورت مجدد اینگونه گرفته می‌شود.

مقدار جرخه اتفاقی که بر روی سازه نصب شده در برآورد روش

آزمایش مودال محیطی در جدول 12 ماهیسی در جدول 12 راهنما

در مدت 56/174 ماه محدود و در مدت 22 ماه محدود و در مدت

به‌منظور اتمام آزمایش‌های مودال محیطی صفحه، مشاهده شده که

شبیه‌سازی بر روی نصب شده و سازه توسط کیکی و بصورت

نگهداری در طول صفحه بیمکنی شده است.

بعد از پایان مدت‌بندی، سپاهان اتاذگیر است دسترسی روند

زیرفناهای اتفاقی در سیستم‌های پایین‌الساز شده در این روش به توجه

مقدار ویژه‌ها در مسیر، سیستم‌های میستمت با استفاده از

محیط‌های مطرح شده در مرحله [19] و فیلتر‌های اندازه‌گیری بر روی

یک‌تاچ مشاهده شده و نمودار تابع در کل روند هست (شکل 9) سیستم

مناسب مناسب به‌عنوان روش موجود برای جرخه اتفاقی است و فرکانس‌های تبیینی (جدول 11)

ضرایب همبستگی و شکل مودها

تغییر زده شده اند.

محمودی هدایی و محمدعلی آذری

مدرس مکاتب مدرس، آبان 1399، دوره 14, شماره 191
جلد 14 فرکانس‌های طبیعی (ترکیه‌ای) حاصل از آماده‌سازی جمع‌آوری ٹوپل بر اساس مبتنی روستی

