Static analysis of composite box beams by dimensional reduction method

Esmaeel Ghafari1, Jalil Rezaeepazhand1*

1- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
* P.O.B. 9177948974 Mashhad, Iran, jrezaeep@um.ac.ir

ABSTRACT

This paper presents prediction of static behavior of composite beams with arbitrary anisotropic materials. The procedure is based on decomposing a 3-D nonlinear elasticity problem into a 2-D analysis of cross section and a 1-D analysis across the beam length. This is accomplished by assuming that magnitude of strain is small compared to unity and cross section size is small relative to wavelength of deformation, inherent to beam-like structures. In 2-D cross sectional analysis warping functions are calculated in terms of 1-D strain parameters and finally, fully coupled classical stiffness constants are derived which include extension, torsion and bending in two directions. 1-D analysis is modeled by Finite Element Method through calculating beam strain energy. In this article warping are derived using Rayleigh-Ritz method. The great advantage of using Rayleigh-Ritz is simplifying cross sectional analysis in contrast with the mesh generation in FEM of similar procedures. Different cross sectional stiffnesses are investigated for ply orientation angle. Calculated results for symmetric and anti-symmetric composite box beams correlate well with 3-D FEM using Abaqus software as well as the experimental results. The present solution has more accurate results for anti-symmetric composite box beam. According to costly use of 3-D FEM analysis, the present procedure with high speed and acceptable accuracy is sufficient for preliminary and optimization problems.

Keywords: Composite Beam, Warping Function, Rayleigh-Ritz Method, Finite Element Method

1- مقدمه

امروزه مواد کامپوزیت کاربردی و روشنفکنی در صنایع مختلف مانند هوافضا، خودروسازی، کشتی سازی و خدمات نرخ مقادیری به وسیله بروز عمرانی و توجه به اینکه کاهش وزن برای افزایش سرعت و کاهش مصرف انرژی مورد نیاز است، از آن بهره می‌برند. همچنین کاهش وزن جدید عاملی در افزایش رضایتمندی سرعت و کاهش مصرف انرژی می‌باشد. در نتیجه، کاهش وزن جدید عاملی در افزایش رضایتمندی سرعت و کاهش مصرف انرژی می‌باشد.

2- تحلیل

تحقیق این سازه‌ها کمتر از انقباض بوده و با وجود مدل‌های مختلف همچنان نیاز به مدل‌های ساده گزینه‌ای ساده‌تر است. با توجه به این نتیجه سه‌بعدی ساده پیامدهای پلیمری و چادرکنی می‌باشند.

3- بررسی

در پی بررسی از اجزای کامپوزیتی موجود تحلیل عمومی به طول نسبی سایر انواع این سازه‌ها انجام شده است. با توجه به این نتیجه شکل سازه‌ها از این نتیجه‌ها به پایان بوده‌ایم.

4- مراجع

بPRI ارجاع به این مقاله از اطلاعات فنی استفاده نمایید:

4-Variational Asymptotic Beam Sectional Analysis

\[G_{ij} = \frac{1}{2} (F_{ij} + F_{ji}) - \delta_{ij} \]

\[\text{in raibat (1)} \]

4×4, 6×6, 8×8 VAM

References

1. Warping
2. Variational Asymptotic Method
3. Functional

Downloaded from mme.modares.ac.ir at 13:54 IRDT on Tuesday May 28th 2019
شکل 1: ماتریس تغییر شکل تیر

\[
T(x_1, x_2, x_3) = f(x_1) + x_2 a_2 + x_3 a_3
\]

\[
R(x_1, x_2, x_3) = \begin{bmatrix}
R(x_1) + x_2 A_2(x_1) + x_3 A_3(x_1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\omega_1 (x_1, x_2, x_3) A_1(x_1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\omega_2 (x_1, x_2, x_3) A_2(x_1)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\omega_3 (x_1, x_2, x_3) A_3(x_1)
\end{bmatrix}
\]

(2)

مکانیک ماتریسی، فوتوافزاری ابعاد ۱۳۹۳، دوره ۱۴، شماره ۱۶

متن به زبان فارسی است که شامل معادلات و تئوری‌های مربوط به تغییر شکل تیر است. شکل ۱ نشان‌دهنده‌ی تغییر شکل تیر در ابعاد سه‌بعدی است. معادلات ۱ تا ۱۲ در این صفحه آورده شده‌اند.
در این کتاب مسئله به می‌پردازی سطحی گردش گیری توان نسبی (21) تحت‌دریافتی (21) تحت‌دریافتی بیان وی به بیان (7) می‌شود.

\[v = \dot{V} \rho = V_0 \]

\[0 = \epsilon^T D_0 e + D_\epsilon \epsilon \]

\[2 \, u = \epsilon^T (\epsilon^T D_0 e + D_\epsilon \epsilon) \]

\[12 \times 12 \text{ (بسط) باله) \]
در شکل 3، شکل تابع اوجه برای سطح مقطع قطعی کامپوزیت نامتقارن با استفاده از روش پیش‌رو رس داده، اوجه‌های مقطع در اثر کرنش بیچینی (2) و 3 می‌باشند. در جدول‌های 4 و 5 به ترتیب مقادیر سفین مقطع‌های سه‌بعدی کامپوزیت نامتقارن و نامتقارن با راوه‌های لایه‌ای 15 محسوب شده بوده و ساختار راست و ساختار ماتریس خطا از طرف راست (0.00%) مرجع می‌شود. ساختار ماتریس راست در شکل‌های 4 و 7 به ترتیب سطینی‌های 15 کامپوزیت، کامپوزیت بیچینی و نامتقارن برای سطح مقطع نامتقارن با تغییر زاویه‌ها.

c (د)

شکل 3 شکل تابع اوجه برای سطح مقطع قطعی کامپوزیت نامتقارن

جدول 4 آزمایش سطینی‌های 15 مقطع قطعی کامپوزیت نامتقارن با راوه‌های لایه‌ای

<table>
<thead>
<tr>
<th>سطینی‌های غیرکمان</th>
<th>روش حاضر</th>
<th>میزان شدت (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>639.4010</td>
<td>642.4010 C_11 (N)</td>
</tr>
<tr>
<td>39</td>
<td>1/12.4010</td>
<td>1/22.4010 C_11 (N.m)</td>
</tr>
<tr>
<td>45</td>
<td>462.4010</td>
<td>501.4010 C_11 (N.m)</td>
</tr>
<tr>
<td>15</td>
<td>130.4010</td>
<td>153.4010 C_11 (N.m)</td>
</tr>
<tr>
<td>31</td>
<td>495.4010</td>
<td>480.4010 C_11 (N.m)</td>
</tr>
</tbody>
</table>

جدول 5 آزمایش سطینی‌های 15 مقطع قطعی کامپوزیت نامتقارن با راوه‌های لایه‌ای

<table>
<thead>
<tr>
<th>سطینی‌های غیرکمان</th>
<th>روش حاضر</th>
<th>میزان شدت (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>609.4010</td>
<td>580.4010 C_11 (N)</td>
</tr>
<tr>
<td>39</td>
<td>468.4010</td>
<td>508.4010 C_11 (N.m)</td>
</tr>
<tr>
<td>23</td>
<td>505.4010</td>
<td>517.4010 C_11 (N.m)</td>
</tr>
<tr>
<td>225</td>
<td>-100</td>
<td>-775 C_11 (N.m)</td>
</tr>
<tr>
<td>17</td>
<td>170.4010</td>
<td>173.4010 C_11 (N.m)</td>
</tr>
<tr>
<td>355</td>
<td>-106</td>
<td>-983 C_11 (N.m)</td>
</tr>
<tr>
<td>75</td>
<td>505.4010</td>
<td>467.4010 C_11 (N.m)</td>
</tr>
</tbody>
</table>
عملیات بالا به بررسی دسترسی به نقاط مختلف سطح هال و کاربرد سازه صورت گرفت.

با توجه به اینکه کوپل خمینی بخشی در مقطع منطقه، شکل 8 نیم‌برانگیزـ با نیم‌برانگیز سطح هال، بخشی و کوپل خمینی به شیوه‌ای به نیم‌برانگیز زاویهٔ لایه‌ای-
چنین به‌صورتی است که نیم‌برانگیز نمودی برای در-
زایی‌های مقطع منطقه 15- به طور مقطع منطقه سطحی گردیده شده است. این ویژگی می‌تواند برای بایداران انالوگ‌سازی بالا همویه در بهره‌برداران زمین‌های مقطع در این تابع دارای سطحی متقابل ملاحظه می‌باشد.

برای پیشرفت‌گیری در مقطع منطقه، زاویهٔ چیدمان 15\(\theta\) و طول

- تحت تأثیر بار در شکل‌های 9 و 10 با تغییر آبیاری کششی نشان داده شده است. مقادیر حاصل از روی حاصل با نتایج مدل‌سازی در نرم‌افزار آیکوس مقایسه شده است. است که از مدل‌سازی در نرم‌افزار آموزشی به شکل (شکل 8) که میزان بهره‌برداری نهایی و دوباره 8803DBR به دست آمده و دوباره

- گر است و حرفی می‌باشند. جایگاه به‌کار گرفته شده است. این نتایج

- سبدی در مقطع قابل دستیابی است با توجه به زمین‌بودن تحلیل

- المان‌ها در حالت بعد شیب‌های اصلی استفاده شده است.

برای پیشرفت‌گیری و 15\(\theta\) با نسبت‌های طولی (\(L/a\)) مختلف تحت بار کششی نمایش داده شده است. شکل‌های 11 و 12 ارائه شده است.

- با بی‌بست معادل نیم‌برانگیز شکل طولی انتهای/ نیم‌برانگیز

- به‌صورتی گردیده، شکل 13 حاصل می‌شود که باید به‌پایه‌بردار افتاده

- طول و نزدیکی شدن به فرایندهای نوری تیر است.

\[\begin{align*}
\theta &= 0.05 \text{ rad} \\
L &= 10 \text{ mm} \\
\text{Cs} &= 0.1 \text{ N.m} \\
\text{Cv} &= 9 \text{ N.m} \\
\end{align*}\]

به‌صورتی که به‌صورتی نیم‌برانگیز کششی شکل 14 و 15 به‌صورتی کششی طولی و پیچشی انتهای

- سطحی گردیده و زاویه‌ای لایه‌ای-

- نیم‌برانگیز با نسبت طولی 5 و بار کششی

- نیم‌برانگیز در انتهای برای روابط

- لایه‌ای-

- چنین مختلف انتهای شده است. طبق شکل 15 در نزدیکی زاویه‌ی چیدمان 30

- درجه، بستگی‌های روابط پیچشی و همچنین خطوط افقی فاقد

- در شکل‌های 16 و 17 برای نیم‌برانگیز

- و 15\(\theta\) با نسبت طولی 0.0762

- به شکل‌های 16 و 17 برای نیم‌برانگیز

- و 15\(\theta\) با نسبت طولی 0.11

- پیچش در طول تیر

- به‌صورتی که به‌صورتی نیم‌برانگیز کششی

- طول و نزدیکی شدن به فرایندهای نوری تیر است.

6- نتیجه‌گیری

استفاده از نویسندگان مکانیک جهت تحلیل تری‌گرمی کامپوزیت به سادگی و اصولایی کامپوزیت‌ها باعث تغییر مدل‌های موجود می‌شود. در این مقاله، از نظریه ترمودینامیک، مدل‌های جدیدی مطرح شده که بهترین بازیابی می‌شود.

7- مراجع

