Numerical simulation of fluid flow in a centrifugal pump at design point and off-design conditions

Mohammad Amin Zoljanahi, Saadat Zirak*

Department of Mechanical Engineering, University of Semnan, Semnan, Iran
*P.O.B. 35131-19111 Semnan, Iran, s_zirak@profs.semnan.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 27 November 2015
Accepted 09 January 2016
Available Online 06 February 2016

Keywords:
Numerical simulation
centrifugal pump
characteristic curve
Turbulence intensity
crude oil

ABSTRACT

This article presents a numerical investigation of fluid flow in one of the centrifugal pumps of pump-Iran Corporation. A computational fluid dynamics (CFD) analysis is performed by using the CFX software for a wide range of volumetric flow rates for two different rotor speeds of 1450 rpm and 2900 rpm and the numerical results of water are validated against measured values of head and total efficiency with an overall acceptable agreement. The results have been obtained for crude oil as well as for water. Numerical results show that the absolute pressure on blade surfaces for crude oil is comparatively less than those amounts in comparison with water.

1-Mohammad Amin Zoljanahi, Saadat Zirak

Numerical simulation of fluid flow in a centrifugal pump at design point and off-design conditions, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 88-98, 2016 (in Persian)

Please cite this article using:
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm

366 W
5432
5- Yanxia Fu
4- Nataraj
3- Etha-norm
2- Tihomir Mihalic
1- Etha-norm
2- نلپر ماسون

4- سیستم افزایش حرارت

5- ویژگی‌های سیستم و استقلال از شیکه

جدول 1 تعداد عناصر پراکنده

<table>
<thead>
<tr>
<th>تعداد سیستم</th>
<th>رایه‌پوش‌های اصلی</th>
<th>رایه‌پوش‌های جانبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>123562</td>
<td>Lohaf</td>
<td>1</td>
</tr>
<tr>
<td>694387</td>
<td>ناهارپرداز</td>
<td>2</td>
</tr>
<tr>
<td>816481</td>
<td>حلولی</td>
<td>3</td>
</tr>
<tr>
<td>262387</td>
<td>اوله خروجی</td>
<td>4</td>
</tr>
</tbody>
</table>

1- Turbo-Grid

Not-slipping
Fig. 3 The view of areas with unstructured and structured grids

Fig. 4 Convergence procedure of numerical solution

Table 2 The characteristics of fluids used into the analysis

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Fluid</th>
<th>Density (kg/m³)</th>
<th>Viscosity (µPas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water</td>
<td>1000</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>Oil</td>
<td>850</td>
<td>0.002</td>
</tr>
</tbody>
</table>

In the numerical analysis, the fluid characteristics are as follows:

- Water: Density: 1000 kg/m³, Viscosity: 0.001 µPas
- Oil: Density: 850 kg/m³, Viscosity: 0.002 µPas
\[H = (P_{\text{total \ outlet}} - P_{\text{total \ inlet}}) \frac{g}{\rho} \] \hspace{2cm} (5)

مقادیر تجزیی تریم‌شده، از کانال‌کوک پمپ ایران از و پمپ گیری از مرکز اتم - ۲۵۰-۲۰۰ کرگدام پمپ ایران با دستگاه هیدرولیکی می‌باشد.

مقادیر عددي میدان از نتایج عددي تحلیل نفت خام متابولیسم ۶ مدل مشخصات است و با نتایج ۱۴۵۰rpm و ۲۹۰۰rpm می‌باشد.

رفتار راه اندازی پمپ گیری در مرکز از نتایج عددي تحلیل نفت خام متابولیسم ۶ مدل مشخصات است و با نتایج ۱۴۵۰rpm و ۲۹۰۰rpm می‌باشد.

شکل ۵ نمایی از شرایط مرزی ورود، خروج و مرز‌های دیگر

چندگاهان: اجزای ساکن، ذوپتال و ذوب پمپ شیب سازی شده آن و برای اتصال فست ساکن و چرخان از غلاف مشترک دستگاه نشان می‌شود، برای حل معادلات انتقال از روش استفاده شده است: به کمک سرعت و فشار از گریمن رایگان به دنیه یال با برای پمپ ساکن تم‌های جلایی استفاده شده است. نکته مهم این است که برای استفاده در پمپ‌های اسپیرال، در واقع بخش، دو باند، دیدن جریان تناوبی یک وضعیت مشخص و با نتایج به‌نحوی قدرت اجزای ساکن و چرخان نسبت به یکدیگر تعیین خواهد شد [1]. اینجاست که در انتقال قطعات از دیگر جریان مدل حمل و نجوم ناهنجاری جدی نمی‌خواند.

شکل ۶ نتایج عددي و تجربی تحلیل

شکل ۷ نتایج عددي و تجربی تحلیل

شکل ۸ نتایج عددي و تجربی تحلیل

شکل ۹ نتایج عددي و تجربی تحلیل

در نتایج مدل حمل و نجوم مربوط به آن، مابین نتایج دستگاه از مرکز اتوماتیک مدل شیب‌زایی و نتایج تجربی عرضه شده است. نشان می‌دهد مجاب جریان ورودی پمپ یک مقدار کاملاً تجربی است.
Fig. 8 Comparison between numerical and experimental results of Power at two angular velocities of 1450 rpm and 2900 rpm for water and Crude Oil

Fig. 7 Comparison between numerical and experimental results of Total Efficiency at two angular velocities of 1450 rpm and 2900 rpm for water and Crude Oil

- Volumetric efficiency
Fig. 9 Comparison of Absolute pressure difference results between inlet and outlet of (a) impeller and (b) spiral Volute at two angular velocities of 1450 rpm and 2900 rpm for water and Crude Oil.

Fig. 10 Comparison of Absolute pressure distribution on blades between water and crude oil at section of hub at BEP at 2900 rpm.

Fig. 11 Comparison of Absolute pressure distribution on blades between water and crude oil at sections of (a) mid, (b) shroud at BEP at 2900 rpm.
تعداد مورد بعد قرار گیرد. در ابتدا امر شدت

\[T_s = \frac{1}{2} \alpha R_s^2 \sqrt{x(x,y,z,\theta)} \] \hspace{1cm} (7)

\[K \] در این راپه \(\alpha R_s \) بیلگی لازم جنبی اشکل محسوب می‌شود. به طوری که:

\[\text{ترمینال سرعت خروجی پروانه} = \text{پمپ است و } N \]

\[H_{\text{im}} \] می‌باشد. در این صورت، شدت خروجی پروانه \(Q \) معنی و به همین علت، \(g \) شتاب گرانش و

\[Q \] و \(U \) در مقدار 3 مادگی نسبت به خروجی پیم هر 30 متر مکعب در ساعت و \(H_{\text{im}} \) می‌باشد. در این راپه، مقدار

\[\psi = \frac{g H_{\text{im}}}{U^2} \] \hspace{1cm} (8)

\[\varphi = \frac{Q}{U^2 R_s^2} \] \hspace{1cm} (9)

\[U \] و

\[H_{\text{im}} \] می‌باشد. در این صورت، شدت خروجی پروانه \(Q \) معنی و به همین علت، \(g \) شتاب گرانش و

\[H_{\text{im}}(Q,n) = C_1 Q^2 + C_2 Q^n + C_3 n^2 \] \hspace{1cm} (10)

\[\text{شکل 12} \] 2D streamline paths and velocity magnitude contours at a plane located in the middle height of the impeller-spiral volute interface for two selected flow rates and a rotor speed of 2900 rpm: water: (a) 30 m³/h and (b) 60 m³/h and (c) 80 m³/h, Crude oil: (d) 30 m³/h and (e) 60 m³/h and (f) 80 m³/h

\[\text{شکل 12} \] 2D streamline paths and velocity magnitude contours at a plane located in the middle height of the impeller-spiral volute interface for two selected flow rates and a rotor speed of 2900 rpm: water: (a) 30 m³/h and (b) 60 m³/h and (c) 80 m³/h, Crude oil: (d) 30 m³/h and (e) 60 m³/h and (f) 80 m³/h

\[\text{شکل 12} \] 2D streamline paths and velocity magnitude contours at a plane located in the middle height of the impeller-spiral volute interface for two selected flow rates and a rotor speed of 2900 rpm: water: (a) 30 m³/h and (b) 60 m³/h and (c) 80 m³/h, Crude oil: (d) 30 m³/h and (e) 60 m³/h and (f) 80 m³/h
متریه دو با مقادیر عدیدی هد پروله به حالت نفت در دو سرعت مختلف نشان داده شده است که از تغییر سیار خوی بروزداری هم اطلاع که از شکل 14 مشخص است. موارد هد پروله در دیه های بالا افت چندانی ندارد ولی این موضوع در شکل 6 که نشان دهنده هد در هر یک از خیاطان قدیمی است مشاهده شده است. کانترل های شدت آشفتگی را بدین یک در شکل 15 نشان داده شده است.

در این رابطه H پاناک سرعت دورانی پروله به حالت نفت مشخص است. مقادیر نتایج بدست آمده در معادله به این مورد در آدم مشخص شده اند که عبارتند از $C_3 = 5.34 \times 10^{-3}$ و $C_2 = 5.53 \times 10^{-5}$ و $C_1 = 1.53 \times 10^{-5}$ که در اثر معادل سازی نرم های مربوط به نتایج عدید ضریب H در حساب ضریب جریان بدست آمده اند.

اکنون در شکل 14 مقایسه ای بین منحنی های حاصل از معادله H به نشان می‌دهد.

![شکل 13 نتایج عدید ضریب هد پروله به حالت نفت](image13)

![شکل 14 مقایسه الی بین منحنی های حاصل از معادله H](image14)

![شکل 15 منحنی های حاصل از معادله H](image15)
خرجی از نقطه طرح به شدت بر جهت گیری جریان تاثیر می‌گذاشت و سرعت آن در اثر تغییرات ماکسیمال به شدت جریان تاثیر می‌گذاشت. به‌خاطر این موارد، در نمونه‌های مختلفی تحت ارتفاعات متفاوت و سرعت‌های متفاوت، از تغییرات در شدت جریان بهره نگرفته و کارایی مدل‌های معرفی شده برای مدل‌برداری این اثرات قابل توجه است.

همانطور که مشخص است با افزایش سرعت دوران میزان کاهش در ضریب‌دهی از 250 تا 1450 rpm، ضریب‌دهی در این موارد به‌طور قابل ملاحظه‌ای کاهش یافت.

در بهترین مدل‌برداری در هر یک از این ارتفاعات، به‌طور مجموعی در حدود 30 ٪ افزایش ضریب‌دهی مشاهده گردید.

1) Normalized
\[
\Delta P_d = \begin{cases}
1.1 \times 75 \times 10^{-6} \rho g u_d^2 D_z^2 & N_s > 65 \\
0.133 \times 10^{-3} \rho (2.5 \times 10^5 \omega D_z^2)^2 \frac{0.134}{8} \omega^3 D_z^5 & N_s < 65
\end{cases}
\]

