Numerical optimization of “Planar twist channel angular extrusion” as a novel severe plastic deformation method by DOE method

Mahmoud Shamsborhan¹, Mahmoud Moradi², Ali Shokuhfar³

1- Department of Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran
2- Department of Mechanical Engineering, Faculty of Engineering, Maleyari University, Maleyari, Iran
3- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
P.O.B. 59139-33137, Mahabad, Iran, m.shamsborhan@iau-mahabad.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 12 December 2015
Accepted 05 March 2016
Available Online 16 May 2016

Keywords:
Severe plastic deformation (SPD)
Finite element analysis (FEA)
Equal channel angular extrusion (ECAP)
Design of experiments
Nanostructured materials

Abstract

The most successful “top-down” approach to produce bulk ultra-fine grained or nanostructured materials involves the use of severe plastic deformation (SPD) processing. The amount of higher effective plastic strain per pass plays a key role on the final microstructure of SPD processed samples. In the present study the numerical experiments of the combination of the equal channel angular pressing (ECAP) and simple shear extrusion (SSE) as a new process entitled “planar twist channel angular extrusion (PTCAE)” was performed based on the Response Surface Methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variables, achieving the mathematical equations, predicting the results to impose higher effective plastic strain values. A and Φ angles, radius and friction coefficient were imposed as the input parameters while average, minimum and maximum effective strain and maximum load was imposed as the output parameters. Governing regression equations obtained after analysis of the simulation data by Minitab software. Optimum process parameters are: a=400, Φ =450, r=2 mm and µ=0.1. Verification of the optimum results using simulation experiment was done. Good agreement between simulation, experimental and optimization was occurred.

Please cite this article using:
M. Shamsborhan, M. Moradi, A. Shokuhfar, Numerical optimization of “Planar twist channel angular extrusion” as a novel severe plastic deformation method by DOE method, Modares Mechanical Engineering, Vol. 16, No. 5, pp. 135-144, 2016 (in Persian)
ارتباط دارد به صورت معادله (1) بیان می‌شود:

\[\sigma = \sigma_0 + k \varepsilon^{1/2} \]

که در آن \(\varepsilon \) نشان استرسگذاری، \(k \) لیتر تسمیع داده شده و \(\sigma_0 \) سرعت تسمیع می‌باشد. این معادله به وسیله مدل اصلی پکتیل (PTE) و فیزیک دانش دیسپوزیت (SSE) تکثیر شده است.

به‌طوری‌که برای اكسترون، روشی عجیب (SPD) جایگزین‌变得更 شد.

Fig. 1 Schematic of ECAP process with channel and corner angle of \(\Phi \) and \(\Psi \)

و Fig. 2 Schematic of SSE process

1. Ultra fine-grained
2. Severe plastic deformation
3. Sub-grain
4. Equal channel angular pressing
5. Single shear extrusion
6. Planar twist extrusion

*به‌طوری‌که برای اكسترون، روشی عجیب (SPD) جایگزین‌变得更 شد.

شکل 1 نمودار نسبتی با زاویه \(\Phi \) و \(\Psi \) گونه در ECAP

شکل 2 نمودار SSE پروس

\[\alpha = \alpha_0 + \beta \varepsilon^{1/2} \]

که برای معادله ساده در استر \(\varepsilon \) برابر داده شده است. در اکسترون (SPD) بدین صورت اکسترون، روشی عجیب (SPD) جایگزین‌变得更 شد.

\[\varepsilon_{eff} = \frac{\gamma}{\gamma - 1} \frac{2 \tan \alpha}{\sqrt{\frac{3}{2}}} \]

که برای معادله ساده در استر \(\varepsilon \) برابر داده شده است. در اکسترون (SPD) بدین صورت اکسترون، روشی عجیب (SPD) جایگزین‌变得更 شد.

\[\varepsilon_{eff} = \frac{\gamma}{\gamma - 1} \frac{2 \tan \alpha}{\sqrt{\frac{3}{2}}} = 1.15 \]

که برای معادله ساده در استر \(\varepsilon \) برابر داده شده است. در اکسترون (SPD) بدین صورت اکسترون، روشی عجیب (SPD) جایگزین‌变得更 شد.

*# Ultra-fine-grained
-# Severe plastic deformation
-# Sub-grain
-# Equal channel angular pressing
-# Single shear extrusion
-# Planar twist extrusion
2- فرآیند آکسرونز در کالاهای زاویه‌دار پیچی صفحه‌ی اعمال کرنش پلاستیک بالاتر در یک سیکل فرآیند تغییر شکل تشکیل می‌گردد. به‌طور همزمان در یک منطقه نیروی شکل چندین هفده را در دل دانشکده که در بالا دارای یک قابل پای انست. بر‌پایه این ساختار، نمی‌توانیم از اعمال کرنش بالاتر کاهش تعداد سیکل‌ها و در نتیجه زمان لازم برای ساخت یک ساختار قوی نیز افزایش یابد.

به‌نیتی گچ یا ذرات در ابعاد آنها منطقه نیروی شکل اعمال شده توسط همزمان با یک ساختار چهارگانه در بخشی از سطح می‌شود. این اعمال باعث کاهش تعداد سیکل‌ها و در نتیجه زمان لازم برای ساخت یک ساختار قوی می‌شود.

3- طراحی و نصب پیچی اکسرونز

با توجه به شکل 2 در فرآیند SSE، کرنش بریش صورت همزمان در اکسرونز بالای پایین و در مقصود این شکل 3 در فرآیند PTCAE اعمال شده است (شکل 3-6). همچنین در فرآیند PTCAE به‌طور همزمان با فرآیند پلاستیک اعمال شده است. که در انتهای شکل 3-7 به یک سیکل اضافه نمی‌شود. این اعمال باعث کاهش تعداد سیکل‌ها و در نتیجه زمان لازم برای ساخت یک ساختار قوی می‌شود.

جدول 1: متغیرهای ورودی فرآیند وسط نور سطح استفاده

<table>
<thead>
<tr>
<th>متغیر</th>
<th>کمیت</th>
<th>واحد</th>
<th>مقدار</th>
<th>علائم</th>
<th>نتیجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>دمای تراش</td>
<td>درجه سانتی‌گراد</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>فشار سطح</td>
<td>نیوتن/سانتی‌متر مربع</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شکل</td>
<td>تکرار</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روش روش پایه یکی از تکنیک‌های پیشگیری از اعمال سیگار است که از این روش نتیجه‌گیری گرفته می‌شود. این روش به‌طور کلی به دو روش سیگار تلفیقی و سیگار عادی تقسیم می‌شود. در روش سیگار تلفیقی از دو نوع سیگار آرایشی و سیگار عادی استفاده می‌شود. این روش به‌طور کلی به دو روش سیگار تلفیقی و سیگار عادی تقسیم می‌شود. در روش سیگار تلفیقی از دو نوع سیگار آرایشی و سیگار عادی استفاده می‌شود.
4- شیآزایی عددي فرآیند PTCAE

برای بررسی فرآیند PTCAE از روش اجزای محدود با استفاده از نرمافزار ANSYS 6.0 بهره گرفته شد. سربند حرکت سیگنال را در نظر گرفته، نشانه و بروز صوت و نمونه ی برای صوت آزمایشگاهی شکل داده از مقدار تغییر شکل بدیده با گره برای ولگردی انتقال مقدار (6) در نظر گرفته شد.

\[\sigma = 18.77 + 100.32 \left(1 - \exp \left(-\frac{0.58}{0.7} \right) \right) \text{MPa} \]

برای شبکه دیسی نامه از همه چیز چاپ و انتقال شد به عنوان ابزار. لازم به ذکر، بررسی نیرو و کرنش شاهد این که ابزار به طریق 0.45 میلی‌تر و تعادل به اندازه 20599 با برد نمونه با سطح 1.14 میلی‌ترم را در اندازه طبقه‌بندی شده است. شکل تغییر نیرو در اندازه ایجاد نمی‌شود. برد نمونه را از مدل شبکه دیسی در حال اولیه و تغییر شکل با روش در شکل 4 ناشده است. این در جدول 1 نشان‌شده است.

5- پیشنهادات

هرچند میزان کرنش در یک سیکل فرآیند با بررسی از دیدگاه بازدهی و علت حمله سیستم‌های پزشکی، شناسایی و تعیین شکل به کار گیری سیستم‌های بهبود گرفته است. شکل با کار گرفتن سیستم‌های پزشکی، میزان کرنش به کار گیری کرنش‌های تغییر شکل و به عنوان میزان بالاتر، باعث نیروهای سیستم‌های بررسی‌شده از اندازه گرفته شد. به کار گرفتن سیستم‌های پزشکی در تغییر شکل 3 فرآیند می‌تواند به گونه‌ای عملکرد به دارو در کنار یک قسمتی که با استفاده از PTCAE می‌تواند به بهبود گرفتن سیستم‌های پزشکی با کمک این مدل باید به همکاری PTCAE جدید است.

1- بررسی و تحلیل آماده کرنش مایلگین نمونه‌ها

در این تحلیل یک نقطه‌ای مورد اگر استفاده گردیده است. جدول 3 اثر افزایش پیش‌بینی کرنش مایلگین نمونه‌های فنی شاخصه در اندازه گیری از مقدار 0.05 فقط خواهد گرفت. سیگناها نمونه‌های فنی شاخصه به ترتیب پیش‌بینی اصلی اثرات با این سیگناها و شاخصه نمونه‌های PTCAE می‌تواند به بهبود گرفتن سیستم‌های پزشکی می‌تواند به بهبود گرفتن سیستم‌های پزشکی با کمک این مدل باید به همکاری PTCAE جدید است.

\[U_{ave} = 1.32526 + 0.2782 e^{-0.03757} \]

همان‌طور که در شکل 5 نشان‌های می‌تواند با کارگزاری رایانه‌ای با زاویه‌ای \(\alpha \) مقادیر کرنش مایلگین نیز افزایش یدیده می‌کند. در واقع \(\alpha \) بهبود شد است.

\(^1\) Lack of fit
جدول ۲ نتایج شیمیایی فرآیند PTCAE طبق ماریسی‌طرات آزمایش‌ها

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>ضریب دلتا</th>
<th>ضریب دلتا (میلی‌متر)</th>
<th>شماره آزمایش</th>
<th>ضریب دلتا</th>
<th>ضریب دلتا (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8631</td>
<td>1.0531</td>
<td>2</td>
<td>0.9946</td>
<td>0.5366</td>
</tr>
<tr>
<td>3</td>
<td>2.176</td>
<td>1.0688</td>
<td>4</td>
<td>0.9536</td>
<td>0.4993</td>
</tr>
</tbody>
</table>

جدول ۳ آماری‌های اصلاح‌شده کرنش میانگین

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>ضریب دلتا</th>
<th>ضریب دلتا (میلی‌متر)</th>
<th>ضریب دلتا</th>
<th>ضریب دلتا (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9954</td>
<td>0.4983</td>
<td>2</td>
<td>0.9546</td>
</tr>
</tbody>
</table>

جدول ۴ آماری‌های اصلاح‌شده کرنش میانگین

<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>ضریب دلتا</th>
<th>ضریب دلتا (میلی‌متر)</th>
<th>ضریب دلتا</th>
<th>ضریب دلتا (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9546</td>
<td>0.4946</td>
<td>2</td>
<td>0.9546</td>
</tr>
</tbody>
</table>
Fig. 7 The effect of α and ϕ angles on the maximum strain

Fig. 8 Response graph of maximum strain in terms of ϕ angle and friction

Fig. 9 Response graph of maximum strain in terms of α and ϕ angles

Fig. 10 Contour line of maximum strain in terms of α and ϕ angles

Fig. 11 The residual normal distribution of maximum strain
جدول ۵ آنالیز واریانس اصلاح‌شده کرنش کمینه

<table>
<thead>
<tr>
<th>درجه آزادی Variance عناصر</th>
<th>مجموع مربعات</th>
<th>معنی‌گیر</th>
<th>دقت</th>
<th>مجموع مربعات</th>
<th>معنی‌گیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۲۰۹</td>
<td>۶</td>
<td>۶.۴۲۵۴</td>
<td>۲۴</td>
<td>۴.۷۷۳۴</td>
<td>۱۹۵۶۲۴۶۸</td>
</tr>
<tr>
<td>۲۰.۲۸</td>
<td>۵</td>
<td>۱۵.۵۵۲۶</td>
<td>۲</td>
<td>۳.۱۱۰۵</td>
<td>۱۱۱۱۱۱۱۱</td>
</tr>
<tr>
<td>۲۲.۱۷</td>
<td>۷.۴۹</td>
<td>۱۶.۷۵۹۰</td>
<td>۱</td>
<td>۱.۶۷۵۹</td>
<td>۱۱۱۱۱۱۱۱</td>
</tr>
<tr>
<td>۵.۷۸</td>
<td>-۴.۳۵۷</td>
<td>۱.۴۳۴۶۲</td>
<td>۲۲</td>
<td>۱.۴۳۴۶</td>
<td>۱۱۱۱۱۱۱۱</td>
</tr>
<tr>
<td>۰.۰۷۵۹</td>
<td>۰.۰۷۵۹</td>
<td>۰.۶۲۵۸</td>
<td>۶</td>
<td>۰.۶۲۵۸</td>
<td>۱۱۱۱۱۱۱۱</td>
</tr>
<tr>
<td>۱.۶۷</td>
<td>۱.۶۷</td>
<td>۴.۷۷۳۴</td>
<td>۲۴</td>
<td>۴.۷۷۳۴</td>
<td>۱۱۱۱۱۱۱۱</td>
</tr>
</tbody>
</table>

t² (adj) = ۶۶.۶۹۰%
t² = ۶۵.۱۶%

جدول ۶ آنالیز واریانس اصلاح‌شده نیروی بیشینه سندی

<table>
<thead>
<tr>
<th>درجه آزادی Variance عناصر</th>
<th>مجموع مربعات</th>
<th>معنی‌گیر</th>
<th>دقت</th>
<th>مجموع مربعات</th>
<th>معنی‌گیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵.۱۲۳۴۵۶۷</td>
<td>۹۰۸۷۶۵۴۳</td>
<td>۸۹۰۸۷۶۵۴۳</td>
<td>۸۹۰۸۷۶۵۴۳</td>
<td>۸۹۰۸۷۶۵۴۳</td>
<td>۸۹۰۸۷۶۵۴۳</td>
</tr>
<tr>
<td>۳.۴۵۶۷۸۹۰</td>
<td>۱۲۳۴۵۶۷۸۹</td>
<td>۱۲۳۴۵۶۷۸۹</td>
<td>۱۲۳۴۵۶۷۸۹</td>
<td>۱۲۳۴۵۶۷۸۹</td>
<td>۱۲۳۴۵۶۷۸۹</td>
</tr>
<tr>
<td>۱.۲۳۴۵۶۷۸</td>
<td>۱.۲۳۴۵۶۷۸</td>
<td>۱.۲۳۴۵۶۷۸</td>
<td>۱.۲۳۴۵۶۷۸</td>
<td>۱.۲۳۴۵۶۷۸</td>
<td>۱.۲۳۴۵۶۷۸</td>
</tr>
<tr>
<td>۰.۲۳۴۵۶۷۸</td>
<td>۰.۲۳۴۵۶۷۸</td>
<td>۰.۲۳۴۵۶۷۸</td>
<td>۰.۲۳۴۵۶۷۸</td>
<td>۰.۲۳۴۵۶۷۸</td>
<td>۰.۲۳۴۵۶۷۸</td>
</tr>
</tbody>
</table>

r² (adj) = ۸۸.۱۹%
r² = ۹۰.۶۵%
شکل 13 اثر پارامترهای اصلی بر نریو بیشینه سنبه

شکل 14 روابط پایه نریو بیشینه سنبه در شرایط برابری شده مقدار نریو بیشینه وارد شده به سنبه نیز بزرگتر است.

شکل 15 روابط پایه نریو بیشینه وارد شده به سنبه به شکل داده شده.

جدول 7 شرایط بیشینه‌ای فراوان

<table>
<thead>
<tr>
<th>هدف</th>
<th>پارامتر</th>
<th>کمترین مقدار</th>
<th>مقدار مورد نظر</th>
<th>بیشترین مقدار</th>
<th>وزن</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرنش کیفیت</td>
<td>کرنش کیفیت</td>
<td>0.8</td>
<td>2.7</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>کرنش کیفیت</td>
<td>کرنش کیفیت</td>
<td>1.1</td>
<td>3.0</td>
<td>3.0</td>
<td>1</td>
</tr>
<tr>
<td>کرنش کیفیت</td>
<td>کرنش کیفیت</td>
<td>0.6</td>
<td>2.5</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>کرنش کیفیت</td>
<td>کرنش کیفیت</td>
<td>10087.5</td>
<td>10087.5</td>
<td>10087.5</td>
<td>1</td>
</tr>
<tr>
<td>نریو ماکزیمیم</td>
<td>نریو ماکزیمیم</td>
<td>5</td>
<td>30690.7</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7 Optimization criteria of the process
جدول 8: وضوحی از محاسبات

| شماره | ضریب اسطوانه | شعاع | ضریب اثر کلی | شکل | تغییر | درصد خطا | تغییر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>2</td>
<td>2</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>4</td>
<td>4</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>6</td>
<td>6</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

(نمونه‌های) تاییدی می‌کند، بهطوری که بعد از یک پاس فراندن اندازه داده

8- تجربه‌گری و جمع‌بندی

در این تحقیق یک فراندن نویزی پلاستیک شکل پلاستیکی انجام گرفته و نتایج آن در پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

قابل فراندن با روازی ۴۰۰ و ϕ = ۴۰۰ درجه، روازی ۴۰۰ درجه، روازی ۴۰۰ درجه و ϕ = ۴۰۰ درجه

6-1- انتسابشن تایی سیاست‌های درد

در این بخش نتایج عددهای استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

یافته‌ها از یافته‌های دیگر نشان داده که در صورت استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

یافته‌ها از یافته‌های دیگر نشان داده که در صورت استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

یافته‌ها از یافته‌های دیگر نشان داده که در صورت استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

یافته‌ها از یافته‌های دیگر نشان داده که در صورت استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

یافته‌ها از یافته‌های دیگر نشان داده که در صورت استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

یافته‌ها از یافته‌های دیگر نشان داده که در صورت استفاده از تاپینه‌های با سختی، پاتریدری مورد استفاده به یک پاس فراندن، بسته به شکل ۳۰ پتی‌پت (PTCAE) در نقشه 16 شانه‌دهده که می‌تواند منجر به افزایش سختی در پتی‌پت (PTCAE) می‌شود. همچنین این نتایج از روش علت کلی محدود برای بررسی این فراندن تحت زواحل، شعاع و ضریب اثبات شکل استفاده شده و با انجام همپایی با، پاتریدری به یک 2 سطح انجام شده است. ضریب اثبات شکل 0.1 بیشتر آمدند.

[12] B. Mani, M. Jahedi, M.H. Paydar, A modification on ECAP process by
[15] Montgomery DC.,
[18] A. Seyyed Nosrati, K. Abramia, Gh. Faraji, Development of a novel forward