مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

مدل‌سازی و کنترل وضعیت یک ماهواره به کمک چرخ عکس‌العملی با روش خطی‌سازی پسخورد و بررسی عملکرد آن با معیارهای توان و اولراینت

نویسندگان
1 دانشیار مهندسی هوافضا -دانشکده فناوریهای نوین -دانشگاه شهید بهشتی
2 دانشجوی کارشناسی ارشد، مهندسی هوافضا، دانشگاه شهید بهشتی
چکیده
معادلات فضاپیما به طور کلی غیرخطی هستند بنابراین استفاده از تئوری‌های کنترل غیرخطی کمک می‌کند تا مسئله کنترل وضعیت فضاپیما در شرایط واقعی‌تری بررسی شود. روش خطی‌سازی پسخورد یک روش کنترل غیرخطی است که دینامیک‌های غیرخطی سیستم را به فرم جدیدی تبدیل می‌کند تا بتوان در طراحی ورودی کنترلی سیستم، از تئوری‌های کنترل خطی نیز استفاده نمود. تعیین توابع خروجی در خطی‌سازی ورودی-خروجی که حالت خاصی از خطی‌سازی پسخورد است، نقش مهمی بر پایداری دینامیک درونی سیستم دارد. معادلات سینماتیک در این مقاله برحسب کواترنیون‌ها بیان شده که موجب انتخاب این پارامترها به عنوان توابع خروجی می‌شود. هم‌چنین از روش تنظیم‌کننده مربعی خطی که یک کنترل بهینه خطی است، برای طراحی کنترل‌کننده سیستم خطی شده در روش خطی‌سازی پسخورد و هم‌چنین طراحی یک کنترل‌کننده وضعیت فضاپیما به صورت مجزا استفاده شده است. روش‌های کنترلی استفاده شده با توجه به محدودیت عملگرها، با معیار اولراینت که انتگرال خطای زاویه دوران حول محور اویلر است، مورد ارزیابی عملکرد قرار می‌گیرند. سپس معیارهای توان مصرفی و تلاش کنترلی عملگرها، برای مقایسه کنترل‌کننده‌ها در نظر گرفته شده‌اند. نتایج شبیه‌سازی‌ها نشان می‌دهد که مقدار اولراینت برای روش خطی‌سازی پسخورد در تمام مانورهای تغییر وضعیت طراحی شده مقدار کمتری است. بررسی معیارهای توان و تلاش کنترلی نیز نشان می‌دهد که روش خطی‌سازی پسخورد نه‌تنها روش سریع‌تری می‌باشد بلکه عملگرها نیز رفتاری بهینه‌تر از خود نشان می‌دهند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling and Spacecraft Attitude Control Using Reaction Wheel with Feedback Linearization, its Performance Study Subject to Power and EULERINT

نویسندگان English

M. Navabi 1
M.R. Hosseini 2
1 New Technologies Engineering Faculty, Shahid Beheshti University, Tehran, Iran
2 New Technologies Engineering Faculty, Shahid Beheshti University, Tehran, Iran
چکیده English

The rotational Equations of motion of spacecraft are generally nonlinear, so use of nonlinear control techniques are helpful in real conditions. Feedback linearization theory is a nonlinear control technique which transforms nonlinear system dynamics into a new form that linear control techniques can be applied. Choosing output functions in input-output linearization which is a specific method of feedback linearization, has a significant effect on internal dynamics stability. In this study the kinematic equations of spacecraft motion are expressed by quaternion parameters, these parameters are selected as output functions. Linear quadratic regulator as a linear optimal control law is used to design a controller for linearized system in feedback linearization control and also to design attitude control of spacecraft separately. By considering the actuator constraints on different control methods that are used here, the EULERINT which is the integral of the Euler angles error about the Euler axis, is evaluated. Then, the power and control effort of the actuators are considered for comparison between controllers. The simulation results show that the amount of EULERINT for feedback linearization method is less among the others. Also study of the power and control effort shows that Feedback linearization method is not only quicker but also more efficient and displays better performance of the actuators.

کلیدواژه‌ها English

Spacecraft
Satellite
EULERINT
Feedback linearization control
Zero Dynamic
Reaction Wheel
[1] M. Navabi, S. Soleymanpour, Standard and robust backstepping control of a spacecraft with inertial uncertainty (revision), Modares Mechanical Engineering, Vol. 14, No. 16, pp. 112-124, 2015. (in Persian فارسی )
[2] M. Navabi, M. Tavana, H. Mirzaei, Attitude control of spacecraft by state dependent riccati equation and power series expansion of riccati methods, Space Science and Technology, Vol. 7, No. 4, pp. 39-49, 2015. (in Persian فارسی )
[3] A. Iyer , S. N. Singh, Minimal realizations from MFDs and attitude control of spinning satellite using gyrotorquers, Proceedings of The 26th Institute of Electrical and Electronics Engineers Conference on Decision and Control, Los Angeles, United States of America, pp. 1269-1274, December 9-11, 1987.
[4] Y. P. Chen, S. C. Lo, Sliding-Mode controller design for spacecraft attitude tracking maneuvers, Institute of Electrical and Electronics Engineers Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, pp. 1328-1333, 1993.
[5] J. J. E. Slotine, W. Li, Applied Nonlinear Control, pp. 207-271, New Jersey: Prentice-Hall, 1991.
[6] Y. N. Fei, Q. H. Wu, Tracking control of robot manipulators via output feedback linearization, Frontiers of Mechanical Engineering in China, Vol. 1, No. 3, pp. 329-335, 2006.
[7] S. John, J. O. Pedro, Hybrid feedback linearization slip control for anti-lock braking system, Acta Polytechnica Hungarica, Vol. 10, No. 1, pp. 81-99, 2013.
[8] Y. Long, S. Lyttle, N. Pagano, D. J. Cappelleri, Design and quaternion-based attitude control of the omnicopter MAV using feedback linearization, Proceedings of The American Society of Mechanical Engineers International Design Engineering Technical Conference, Chicago, United States of America, August 12-15, 2012.
[9] H. Bang, J. S. Lee, Y. J. Eun, Nonlinear attitude control for a rigid spacecraft by feedback linearization, Mechanical Science and Technology, Vol. 18, No. 2, pp. 203-210, 2004.
[10] M. Navabi, N. Nasiri, Modeling and simulating the earth magnetic field utilizing the 10th generation of IGRF and comparison the linear and nonlinear transformation in order to use in satellite attitude control, Space Science and Technology, Vol. 3, No. 4, pp. 45-52, 2011. (in Persian فارسی )
[11] I. Kök, Comparison and Analysis of Attitude Control Systems of a Satellite Using Reaction Wheel Actuators, Master Thesis, Department of Computer Science Electrical and Space Engineering, Luleå University of Technology, Sweden, 2012.
[12] D. E. Kirk, Optimal Control Theory an Introduction, pp. 209-219, New York: Dover Publications, 2004.
[13] M. Navabi, H. R. Mirzaei, Dynamic modeling and nonlinear adaptive control of mesicopter flight, Modares Mechanical Engineering, Vol. 15, No. 5, pp. 1-12, 2015. (in Persian فارسی )
[14] J. Kim, J. Crassidis, A comparative study of sliding mode control and time-optimal control, Proceedings of The American Institute of Aeronautics and Astronautics/American Astronautical Society, Astrodynamics Specialist Conference and Exhibit, Boston, United States of America, August 10-12, 1998.
[15] M. J. Sidi, Spacecraft Dynamics and Control: A Practical Engineering Approach, pp. 95-169, New York: Cambridge university press, 1997.
[16] M. Navabi, N. Nasiri, Attitude control of microsatellite in terms of energy consumption for reaction wheel and magnetorquer actuators, Proceedings of The 10th Conference of Iranian Aerospace Society, Tehran, Iran, March 1-3, 2010. (in Persian فارسی )
[17] M. Rahmani, A. Ghanbari, Computed torque control of a caterpillar robot manipulator using neural network, Advanced Engineering Forum, Vol. 15, pp. 106-118, 2016.
[18] H. K. Khalil, Nonlinear Systems, Third Edittion, pp. 505-530, New Jersey: Prentice-Hall, 1996.
[19] M. Navabi, S. Soleymanpour, Command filtered modular adaptive backstepping attitude control of spacecraft in presence of disturbance torque, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 285-296, 2015. (in Persian فارسی )
[20] B. S. Anjali, A. Vivek, J. L. Nandagopal, Simulation and analysis of integral LQR controller for inner control loop design of a fixed wing micro aerial vehicle (MAV), Procedia Technology, Vol. 25, pp. 76-83, 2016.
[21] Y. Yang, Analytic LQR design for spacecraft control system based on quaternion model, Aerospace Engineering, Vol. 25, No. 3, pp. 448-453, 2011.
[22] B. D. Anderson, J. B. Moore, Linear Optimal Control, pp. 70-77, New Jersey: Prentice-Hall, 1971.
[23] Z. Shulong, A. Honglei, Z. Daibing, A new feedback linearization lqr control for attitude of quadrotor, Proceedings of The 13th Institute of Electrical and Electronics Engineers International Conference on Control Automation Robotics & Vision, Marina Bay Sands, Singapore, pp. 1593-1597, December 10-12, 2014.