Volume 19, Issue 3 (March 2019)                   Modares Mechanical Engineering 2019, 19(3): 515-526 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khatibi M, Mohammadzadeh Kowsari M, Niazmand H. Numerical Study of the Thermo-physical Properties Effects of a Finned Flat-tube Heat Exchanger Body Material on the Adsorption Chiller Performance. Modares Mechanical Engineering 2019; 19 (3) :515-526
URL: http://mme.modares.ac.ir/article-15-18241-en.html
1- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
2- Mechanical Engineering Department, Engineering Faculty, Ferdowsi University of Mashhad, Mashhad, Iran , niazmand@um.ac.ir
Abstract:   (8348 Views)
In this study, the thermo-physical properties effects of the heat exchanger body on the adsorption chillers performance have been investigated. For this purpose, an adsorbent bed with a rectangular finned flat-tube heat exchanger is simulated by employing a three-dimensional control volume scheme. Furthermore, silica gel SWS-1L-water has been used as a working pair. In order to investigate the effects of thermo-physical properties of the heat exchanger body material, two main parameters including the thermal conductivity coefficient and the volumetric thermal capacity are examined. Also, the effects of these parameters along with variations of the fin height and fin pitch on the specific cooling power (SCP) and the system coefficient of performance (COP) are investigated. The results indicated that the SCP increases with the increase in thermal conductivity coefficient up to a certain value, which increases and decreases with the increase in fin height and fin pitch, respectively. The results also showed that the effects of the volumetric thermal capacity on the SCP are negligible such that it can be considered independent of the heat exchanger body material volumetric thermal capacity. Unlike the SCP, the COP is strongly influenced by the volumetric thermal capacity. The increase in volumetric thermal capacity results in decreasing the COP. The slope of the decrease in the COP decreases with increasing the fin height and pitch. Also, by increasing the thermal conductivity coefficient, the COP slightly decreases.
Keywords: -
Full-Text [PDF 648 kb]   (2842 Downloads)    
Article Type: Letter to Editor | Subject: Heat & Mass Transfer
Received: 2018/03/18 | Accepted: 2018/11/3 | Published: 2019/03/1

References
1. Demir H, Mobedi M, Ülkü S. A review on adsorption heat pump: Problems and solutions. Renewable and Sustainable Energy Reviews. 2008;12(9):2381-2403. [Link] [DOI:10.1016/j.rser.2007.06.005]
2. Aristov YI. Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics. Renewable Energy. 2017;110:105-114. [Link] [DOI:10.1016/j.renene.2016.06.055]
3. Li M, Huang HB, Wang RZ, Wang LL, Cai WD, Yang WM. Experimental study on adsorbent of activated carbon with refrigerant of methanol and ethanol for solar ice maker. Renewable Energy. 2004;29(15):2235-2244. [Link] [DOI:10.1016/j.renene.2004.04.006]
4. Allouhi A, Kousksou T, Jamil A, El Rhafiki T, Mourad Y, Zeraouli Y. Optimal working pairs for solar adsorption cooling applications. Energy. 2015;79:235-247. [Link] [DOI:10.1016/j.energy.2014.11.010]
5. Demir H, Mobedi M, Ülkü S. Effects of porosity on heat and mass transfer in a granular adsorbent bed. International Communications in Heat and Mass Transfer. 2009;36(4):372-377. [Link] [DOI:10.1016/j.icheatmasstransfer.2009.01.008]
6. Niazmand H, Talebian H, Mahdavikhah M. Effects of particle diameter on performance improvement of adsorption systems. Applied Thermal Engineering. 2013;59(1-2):243-252. [Link] [DOI:10.1016/j.applthermaleng.2013.05.043]
7. Rezk A, Al-Dadah RK, Mahmoud S, Elsayed A. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Applied Thermal Engineering. 2013;53(2):278-284. [Link] [DOI:10.1016/j.applthermaleng.2012.04.008]
8. Rezk AR, Al-Dadah RK. Physical and operating conditions effects on silica gel/water adsorption chiller performance. Applied Energy. 2012;89(1):142-149. [Link] [DOI:10.1016/j.apenergy.2010.11.021]
9. Niazmand H, Dabzadeh I. Numerical simulation of heat and mass transfer in adsorbent beds with annular fins. International Journal of Refrigeration. 2012;35(3):581-593. [Link] [DOI:10.1016/j.ijrefrig.2011.05.013]
10. Niazmand H, Talebian H, Mahdavikhah M. Bed geometrical specifications effects on the performance of silica/water adsorption chillers. International Journal of Refrigeration. 2012;35(8):2261-2274. [Link] [DOI:10.1016/j.ijrefrig.2012.08.017]
11. Golparvar SB, Mohammadzadeh Kowsari M, Niazmand H. Optimization of longitudinal finned-tube adsorber bed in an exhaust waste heat driven adsorption cooling system. Modares Mechanical Engineering. 2017;16(12):767-778. [Persian] [Link]
12. Golparvar B, Niazmand H. Adsorption cooling systems for heavy trucks A/C applications driven by exhaust and coolant waste heats. Applied Thermal Engineering. 2018;135:158-169. [Link] [DOI:10.1016/j.applthermaleng.2018.02.029]
13. Golparvar B, Niazmand H, Sharafian A, Ahmadian Hosseini A. Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system. Applied Energy. 2018;232:504-516. [Link] [DOI:10.1016/j.apenergy.2018.10.002]
14. Mohammadzadeh Kowsari M, Golparvar SB, Niazmand H. Numerical investigation on the effect of flat-tube heat exchanger geometrical structure on the performance of adsorption chiller. Modares Mechanical Engineering. 2017;16(12):345-356. [Persian] [Link]
15. Hinze M, Ranft F, Drummer D, Schwieger W. Reduction of the heat capacity in low-temperature adsorption chillers using thermally conductive polymers as heat exchangers material. Energy Conversion and Management. 2017;145(C):378-385. [Link] [DOI:10.1016/j.enconman.2017.05.011]
16. Verde M, Harby K, Corberán JM. Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Applied Thermal Engineering. 2017;111:489-502. [Link] [DOI:10.1016/j.applthermaleng.2016.09.099]
17. Chen X, Su Y, Reay D, Riffat S. Recent research developments in polymer heat exchangers- A review. Renewable and Sustainable Energy Reviews. 2016;60:1367-1386. [Link] [DOI:10.1016/j.rser.2016.03.024]
18. Sircar S, Hufton JR. Why does the linear driving force model for adsorption kinetics work?. Adsorption. 2000;6(2):137-147. [Link] [DOI:10.1023/A:1008965317983]
19. Saha BB, Chakraborty A, Koyama Sh, Aristov YI. A new generation cooling device employing CaCl2-in-silica gel-water system. International Journal of Heat and Mass Transfer. 2009;52(1-2):516-524. [Link] [DOI:10.1016/j.ijheatmasstransfer.2008.06.018]
20. Tokarev MM, Okunev BN, Safonov MS, Kheifets LI, Aristov YI. Approximation equations for describing the sorption equilibrium between water vapor and a CaCl2-in-silica gel composite sorbent. Russian Journal of Physical Chemistry. 2005;79(9):1490-1493. [Link]
21. Mohammadzadeh Kowsari M. Numerical modeling and structural investigation of adsorbent bed with flat-tube heat exchanger in adsorption chillers [Dissertation]. Mashhad: Ferdowci University of Mashhad; 2016. [Persian] [Link]
22. Mohammadzadeh Kowsari M, Niazmand H, Tokarev MM. Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation. Applied Energy. 2018;213:540-554. [Link] [DOI:10.1016/j.apenergy.2017.11.019]
23. Rogala Z. Adsorption chiller using flat-tube adsorbers-Performance assessment and optimization. Applied Thermal Engineering. 2017;121(C):431-442. [Link] [DOI:10.1016/j.applthermaleng.2017.04.059]
24. Mohammadzadeh Kowsari M, Golparvar SB, Niazmand H. Effect of inter-particle mass transfer resistance on the performance parameters of an adsorption chiller with finned flat-tube heat exchanger. Modares Mechanical Engineering. 2017;17(3):414-424. [Persian] [Link]
25. Bergman TL, Lavine AS, Incropera FP. Fundamentals of Heat and Mass Transfer. 7th Edition. Hoboken: John Wiley & Sons; 2011. [Link]
26. Reay DA. The use of polymers in heat exchangers. Heat Recovery Systems and CHP. 1989;9(3):209-216. [Link] [DOI:10.1016/0890-4332(89)90004-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.