Volume 19, Issue 4 (April 2019)                   Modares Mechanical Engineering 2019, 19(4): 801-813 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Adami S, Rahmani O, Ghasemi P. Analytical and Experimental Study of Sandwich Beams with Flexible Core and Composite Facings Reinforced with Carbon Nanotubes. Modares Mechanical Engineering 2019; 19 (4) :801-813
URL: http://mme.modares.ac.ir/article-15-18283-en.html
1- Mechanical Engineering Department, Engineering Faculty, University of Zanjan, Zanjan, Iran
2- Mechanical Engineering Department, Engineering Faculty, University of Zanjan, Zanjan, Iran , omid.rahmani@znu.ac.ir
Abstract:   (7719 Views)
Today, sandwich structures are being used in many applications. Understanding the behavior of these structures and their properties is necessary for proper and optimum design. Because of thin face sheet and low stiffness of foam core, sandwich beams are very sensitive when exposed to local loading. Due to their structure, carbon nanotubes (CNT) have excellent mechanical properties, which improve the mechanical properties of the polymer when added to polymer matrix. In this article, the indentation behavior of sandwich structure is studied experimentally and theoretically. ABAQUS software is used for modeling the indentation behavior of sandwich beam. Elastic modulus of epoxy resin reinforced with CNT with different weight fractions is obtained with use of Mori-Tanaka theory and also by fabrication and testing of the composite specimens. Results show that adding CNT up to 0.3 %wt improve the elastic modulus of composite, while weight fraction of CNT more than 0.3% decrease the mechanical properties. Finally, the results obtained from the analytical solution and ABAQUS modeling were compared with the results obtained from experimental tests of indentation of sandwich structures. An acceptable agreement was observed between the results.
Full-Text [PDF 1023 kb]   (3433 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2018/03/29 | Accepted: 2018/11/12 | Published: 2019/04/6

References
1. Rizov VI. Non-linear indentation behavior of foam core sandwich composite materials-A 2D approach. Computational Materials Science. 2006;35(2):107-115. [Link] [DOI:10.1016/j.commatsci.2005.02.009]
2. Meyer-Piening HR. Remarks on higher order sandwich stress and deflection analyses. In: Olsson KA, Reichard RP. Sandwich Constructions I. Warrington: Engineering Materials Advisory Services; 1989. p. 107-127. [Link]
3. Soden PD. Indentation of composite sandwich beams. The Journal of Strain Analysis for Engineering Design. 1996;31(5):353-360. [Link] [DOI:10.1243/03093247V315353]
4. Shuaeib FM, Soden PD. Indentation failure of composite sandwich beams. Composites Science and Technology. 1997;57(9-10):1249-1259. [Link] [DOI:10.1016/S0266-3538(97)00060-2]
5. Zingone G. Limit analysis of a beam in bending immersed in an elastoplastic medium. Meccanica. 1968;3(1):48-56. [Link] [DOI:10.1007/BF02173994]
6. Zenkert D, Shipsha A, Persson K. Static indentation and unloading response of sandwich beams. Composites Part B Engineering. 2004;35(6-8):511-522. [Link] [DOI:10.1016/j.compositesb.2003.09.006]
7. Navarro P, Abrate S, Aubry J, Marguet S, Ferrero JF. Analytical modeling of indentation of composite sandwich beam. Composite Structures. 2013;100:79-88. [Link] [DOI:10.1016/j.compstruct.2012.12.017]
8. Saadati M, Sadighi M. Indentation in lightweight composite sandwich beams. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering. 2009;223(6):825-835. [Link] [DOI:10.1243/09544100JAERO416]
9. Dariushi S, Sadighi M. Analysis of composite sandwich beam with enhanced nonlinear high order sandwich panel theory. Modares Mechanical Engineering. 2015;14(16):1-8. [Persian] [Link]
10. Taheri-Behrooz F, Mansouri Nik M. Experimental and numerical analysis of sandwich composite beams under four-point bending. Modares Mechanical Engineering. 2017;17(1):241-252. [Persian] [Link]
11. yazdani M, Ghassemi A, Hedatati M. Bending analysis of composite sandwich plates using generalized differential quadrature method based on FSDT. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering. 2013;6(1):47-62. [Persian] [Link]
12. Manalo AC, Aravinthan T, Karunasena W, Islam MM. Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions. Composite Structures. 2010;92(4):984-995. [Link] [DOI:10.1016/j.compstruct.2009.09.046]
13. Wattanasakulpong N, Ungbhakorn V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science. 2013;71:201-208. [Link] [DOI:10.1016/j.commatsci.2013.01.028]
14. Zhu P, Lei ZX, Liew KM. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures. 2012;94(4):1450-1460. [Link] [DOI:10.1016/j.compstruct.2011.11.010]
15. Shen HS. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures. 2009;91(1):9-19. [Link] [DOI:10.1016/j.compstruct.2009.04.026]
16. Shokrieh MM, Zeinedini A, Ghoreishi SM. Effects of adding multiwall carbon nanotubes on mechanical properties of Epoxy resin and Glass/Epoxy laminated composites. Modares Mechanical Engineering. 2015;15(9):125-133. [Persian] [Link]
17. Wang ZX, Shen HS. Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Composites Part B Engineering. 2012;43(2):411-421. [Link] [DOI:10.1016/j.compositesb.2011.04.040]
18. Tagrara SH, Benachour A, Bouiadjra MB, Tounsi A. On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams. Steel and Composite Structures. 2015;19(5):1259-1277. [Link] [DOI:10.12989/scs.2015.19.5.1259]
19. Mehar K, Panda SK. Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory. 5th National Conference on Processing and Characterization of Materials, 12-13 December, 2015, Rourkela, India. Bristol: IOP Publishing; 2016. p. 012014. [Link]
20. Tserpes KI, Silvestre N, editors. Modeling of carbon nanotubes, graphene and their composites. 1st Edition. Berlin: Springer; 2014. [Link] [DOI:10.1007/978-3-319-01201-8]
21. Mura T. Micromechanics of defects in solids. Volume 3. 2nd Edition. Leiden: Martinus Nijhoff Publishers;1987. [Link]
22. Shi DL, Feng XQ, Huang YY, Hwang KC, Gao H. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. Journal of Engineering Materials and Technology. 2004;126(3):250-257. [Link] [DOI:10.1115/1.1751182]
23. Yas MH, Heshmati M. Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Applied Mathematical Modelling. 2012;36(4):1371-1394. [Link] [DOI:10.1016/j.apm.2011.08.037]
24. Wang ZX, Xu J, Qiao P. Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates. Composite Structures. 2014;108:423-434. [Link] [DOI:10.1016/j.compstruct.2013.09.024]
25. Song YS, Youn JR. Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer. 2006;47(5):1741-1748. [Link] [DOI:10.1016/j.polymer.2006.01.013]
26. Vallabhan CVG, Das YC. A refined model for beams on elastic foundations. International Journal of Solids and Structures. 1991;27(5):629-637. [Link] [DOI:10.1016/0020-7683(91)90217-4]
27. ASTM D638-03. Standard test method for tensile properties of plastics [Internet]. West Conshohocken, PA: ASTM International; 2003 [cited 2018 Mar 01]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D638-03.htm [Link]
28. Zhang CL, Shen HS. Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Applied Physics Letters. 2006;89(8):081904. [Link] [DOI:10.1063/1.2336622]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.