Volume 19, Issue 6 (June 2019)                   Modares Mechanical Engineering 2019, 19(6): 1327-1335 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faraji Kheyrabadi M, Kheradmand S. Numerical Investigation of Ambient Temperature and Actual Impactor Plates Effects on Its Efficiency. Modares Mechanical Engineering 2019; 19 (6) :1327-1335
URL: http://mme.modares.ac.ir/article-15-18931-en.html
1- Aerodynamic, Propulsion & Energy Conversion Department, Mechanical Engineering Faculty, Malek Ashtar University of Technology, Shahinshahr, Iran
2- Aerodynamic, Propulsion & Energy Conversion Department, Mechanical Engineering Faculty, Malek Ashtar University of Technology, Shahinshahr, Iran , kheradmand@mut-es.ac.ir
Abstract:   (7688 Views)
In the present work, an investigation and simulation of the air flow, containing solid suspended particles in the actual impactor particles under investigation are in the micron range. The results of this work can be illustrated by simulating the motion of particles in an actual impactor, investigating the effects of temperature changes on the surrounding environment, and the impedance plates on the accumulation efficiency. In the first part, by deriving the governing equations for this phenomenon and choosing the appropriate numerical method for solving these equations, the path of motion is simulated. By determining the path of the particles, it is possible to determine the number of particles deposited on collecting plate, and to the mentioned relations, the collection efficiency is obtained a laboratory experiment, which compared with laboratory values. This comparison indicates the acceptable accuracy of the chosen employed method. In the next section, by selecting particles with different densities, of the environment temperature and inlet air variations by assuming constant plate temperature, and collector plate temperature variation on the impactor efficiency have been investigated. The results show that the particle density affects the efficiency of and reduces the diameter of cut from 2.2 to 4.2 in Due to the increased viscosity of the air, the of reduces the efficiency of The results showed that temperature variation of the collection plate could also change the particle collecting efficiency.
 
Full-Text [PDF 537 kb]   (2130 Downloads)    
Article Type: Original Research | Subject: Two & Multi Phase Flow
Received: 2018/04/14 | Accepted: 2019/02/16 | Published: 2019/05/22

References
1. Markowski GR. Reducing blowoff in cascade impactor measurements. Aerosol Science and Technology. 1984;3(4):431-439. [Link] [DOI:10.1080/02786828408959030]
2. Marple VA. History of impactors-the first 110 years. Aerosol Science and Technology. 2004;38(3):247-292. [Link] [DOI:10.1080/02786820490424347]
3. Marple VA, Willeke K. Inertial impactors: Theory, design and use. In: Liu BYH, editor. Fine particles: Aerosol generation, measurement, sampling, and analysis. New York: Academic Press; 1976. pp. 411-446. [Link] [DOI:10.1016/B978-0-12-452950-2.50023-3]
4. Huang CH, Tsai CJ. Influence of impaction plate diameter and particle density on the collection efficiency of round-nozzle inertial impactors. Aerosol Science and Technology. 2002;36(6):714-720. [Link] [DOI:10.1080/02786820290038410]
5. Vinchurkar S, Longest PW, Peart J. CFD simulations of the Andersen cascade impactor: Model development and effects of aerosol charge. Journal of Aerosol Science. 2009;40(9):807-822. [Link] [DOI:10.1016/j.jaerosci.2009.05.005]
6. Kim YJ, Yook SJ. Enhancement of collection efficiency of inertial impactors using elliptical concave impaction plates. Journal of Aerosol Science. 2011;42(12):898-908. [Link] [DOI:10.1016/j.jaerosci.2011.08.006]
7. Hata M, Linfa B, Otani Y, Furuuchi M. Performance evaluation of an Andersen cascade impactor with an additional stage for nanoparticle sampling. Aerosol and Air Quality Research. 2012;12(6):1041-1048. [Link] [DOI:10.4209/aaqr.2012.08.0204]
8. Kim MK, Kim WG, Lee KS, Yook SJ. Collection efficiency of round-nozzle impactors with horizontal annular inlet. Journal of Aerosol Science. 2014;74:63-69. [Link] [DOI:10.1016/j.jaerosci.2014.04.007]
9. Park CW, Kim G, Yook SJ, Ahn KH. Investigation of collection efficiency of round-nozzle impactors at different atmospheric pressures and temperatures. Advanced Powder Technology. 2015;26(3):868-873. [Link] [DOI:10.1016/j.apt.2015.02.014]
10. Talebizadeh P, Rahimzadeh H, Ahmadi G. Study the thermophoresis effect on the deposition of nano-particles from diesel engine exhaust after the dilution tunnel. Modares Mechanical Engineering. 2016;16(4):383-390. [Persian] [Link]
11. Li H, Faulkner WB, Haglund JS, Lacey RE. Effect of convergence angle on impactor performance. Aerosol Science and Technology. 2017;51(8):981-987. [Link] [DOI:10.1080/02786826.2017.1322174]
12. Tsai CJ, Cheng YH. Solid particle collection characteristics on impaction surfaces of different designs. Aerosol Science and Technology. 1995;23(1):96-106. [Link] [DOI:10.1080/02786829508965297]
13. Lee BU, Kim SS. The effect of varying impaction plate temperature on impactor performance: Experimental studies. Journal of Aerosol Science. 2002;33(3):451-457. [Link] [DOI:10.1016/S0021-8502(01)00191-4]
14. McFarland AR, Hu S, Baehl MM, Richardson KW, Poeschl PM. In-line impactor inlet for bioaerosol sampling. Aerosol Science and Technology. 2011;45(6):701-711. [Link] [DOI:10.1080/02786826.2011.553249]
15. Son M, Lim S, Sung G, Kim T, Ha Y, Choi K, et al. Development of a novel aerosol impactor utilizing inward flow from a ring-shaped nozzle. Journal of Aerosol Science. 2015;85:1-9. [Link] [DOI:10.1016/j.jaerosci.2015.02.004]
16. Cheon TW, Lee JY, Bae JY, Yook SJ. Enhancement of collection efficiency of an inertial impactor using an additional punched impaction plate. Aerosol and Air Quality Research. 2017;17(10):2349-2357. [Link] [DOI:10.4209/aaqr.2017.01.0018]
17. Asbach Ch, Clavaguera S, Todea AM. Measurement methods for nanoparticles in indoor and outdoor air. In: Viana M, editor. Indoor and outdoor nanoparticles: Determinants of release and exposure scenarios. Cham: Springer; 2015. pp. 19-49. [Link] [DOI:10.1007/698_2015_423]
18. Shamshirband Sh, Malvandi A, Karimipour A, Goodarzi M, Afrand M, Petković D, et al. Performance investigation of micro-and nano-sized particle erosion in a 90 elbow using an ANFIS model. Powder Technology. 2015;284:336-343. [Link] [DOI:10.1016/j.powtec.2015.06.073]
19. Sislian PR, Pham D, Zhang X, Li M, Mädler L, Christofides PD. Bacterial aerosol neutralization by aerodynamic shocks using an impactor system: Experimental results for E.coli and analysis. Chemical Engineering Science. 2010;65(4):1490-1502. [Link] [DOI:10.1016/j.ces.2009.10.029]
20. Hinds WC. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd Edition. Hoboken: John Wiley & Sons; 2012. [Link]
21. Hari S, Hassan YA, McFarland AR. Optimization studies on a slit virtual impactor. Particulate Science and Technology. 2006;24(2):105-136. [Link] [DOI:10.1080/02726350500403298]
22. Straub DJ, Collett Jr JL. Numerical and experimental performance evaluation of the 3-stage FROSTY supercooled cloud collector. Aerosol Science and Technology. 2001;34(3):247-261. [Link] [DOI:10.1080/02786820120337]
23. Lutro HF. The effect of thermophoresis on the particle deposition on a cylinder [Dissertation]. Trondheim:Norwegian University of Science and Technology; 2012. [Link]
24. Talbot L, Cheng RK, Schefer RW, Willis DR. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics. 1980;101(4):737-758. [Link] [DOI:10.1017/S0022112080001905]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.