Volume 19, Issue 12 (December 2019)                   Modares Mechanical Engineering 2019, 19(12): 2837-2846 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami M, Hassani A, Afrasiab H, Kazemiyan M. Theoretical and Numerical Investigation of Environmental Effects on Mechanical Behavior of Biodegradable Polymers. Modares Mechanical Engineering 2019; 19 (12) :2837-2846
URL: http://mme.modares.ac.ir/article-15-19115-en.html
1- Mechanical Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran
2- Mechanical Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran , Hassani@nit.ac.ir
Abstract:   (6272 Views)
­Biodegradable polymers have widespread usages in the biomedical field, such as stents, sutures, scaffolds, and implants. Due to the importance of behavior of these materials exposed to environmental effects, whether in nature or the human body, extensive researches have been carried out in the last decade that most of them are experimental results and very few are theoretical results. These researches have mainly been performed for specific loading and temperature conditions and so on. For this purpose, in addition to validating the theoretical and empirical relationships derived through the experimental results, the effects of more complex conditions can be considered using the finite element method and numerical solution. In this paper, an analytical relationship extraction method has been presented, as well as the abilities and weaknesses of biodegradable polymers have been investigated by presenting the experimental results of biodegradable polymers. A numerical and finite element analysis is also provided to analyze the behavior of biodegradable polymers. The theoretical analysis and numerical simulation of biodegradable polymers have been carried out using the neo-Hookean hyperelastic model. First, the relationship of stress, versus the stretch has been derived using the strain energy of neo-Hookean material. Next, by assuming a degradation parameter, changes in the properties of the material exposed to environmental effects, according to the time in Abaqus Umat subroutine have been applied to the model. Finally, the accuracy of the simulation has been studied by a comparison between the experimental results and theoretical analyses with numerical solutions.
Full-Text [PDF 955 kb]   (3007 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2018/04/18 | Accepted: 2019/05/26 | Published: 2019/12/21

References
1. Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT. Mechanical study of PLA-PCL fibres during in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4(3):451-460. [Link] [DOI:10.1016/j.jmbbm.2010.12.006]
2. Soares JS. Constitutive modeling of biodegradable polymers for application in endovascular stents [Dissertation]. College Station, Texas: Texas A&M University; 2008. [Link]
3. Soares JS, Moore JE, Rajagopal KR. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO Journal. 2008;54(3):295-301. [Link] [DOI:10.1097/MAT.0b013e31816ba55a]
4. Soares JS, Rajagopal KR, Moore JE. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomechanics and Modeling in Mechanobiology. 2010;9(2):177-186. [Link] [DOI:10.1007/s10237-009-0168-z]
5. Knowles JK. The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. International Journal of Fracture. 1977;13(5):611-639. [Link] [DOI:10.1007/BF00017296]
6. Vieira AC, Guedes RM, Marques AT. Development of ligament tissue biodegradable devices: a review. Journal of Biomechanics. 2009;42(15):2421-30. [Link] [DOI:10.1016/j.jbiomech.2009.07.019]
7. Vieira AC, Vieira JC, Guedes RM, Marques AT. Degradation and Viscoelastic properties of PLA-PCL, PGA-PCL, PDO and PGA fibres. Materials Science Forum. 2010;636-637(1):825-832. [Link] [DOI:10.4028/www.scientific.net/MSF.636-637.825]
8. Vieira AC, Marques AT, Guedes RM, Tita V. Material model proposal for biodegradable materials. Procedia Engineering. 2011;10:1597-1602. [Link] [DOI:10.1016/j.proeng.2011.04.267]
9. Vieira AC, Medeiros R, Marques AT, Guedes RM, Tita V. Visco-elastic-plastic properties of suture fibers made of PLA-PCL. Materials Science Forum. 2013;730-732(1):56-61. [Link] [DOI:10.4028/www.scientific.net/MSF.730-732.56]
10. Vieira AC, Guedes RM, Tita V. Constitutive modeling of biodegradable polymers: hydrolytic degradation and time dependent behavior. International Journal of Solids and Structures. 2014;51(5):1164-1174. [Link] [DOI:10.1016/j.ijsolstr.2013.12.010]
11. Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. Journal of Biomechanics. 2015;48(10):2012-2018. [Link] [DOI:10.1016/j.jbiomech.2015.03.024]
12. Debusschere N, Segers P, Dubruel P, Verhegghe B, De Beule M. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Annals of Biomedical Engineering. 2016;44(2):382-390. [Link] [DOI:10.1007/s10439-015-1530-1]
13. Debusschere N. Finite element modelling of biodegradable stents [Dissertation]. Ghent: Ghent University; 2016. [Link]
14. Holzapfel GA. Nonlinear solid mechanics: a continuum approach for engineering. 1st Edition. Chichester: John Wiley & Sons; 2000. p. 179-304. [Link]
15. Belytdchko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures. 1st Edition. New York: John Wiley & Sons; 2000. p. 215-308. [Link]
16. 16‐ Pegoretti A, Penati A. Effects of hygrothermal aging on the molar mass and thermal properties of recycled poly(ethylene terephthalate) and its short glass fibre composites. Polymer Degradation and Stability. 2004;86(2):233‐243. [Link] [DOI:10.1016/j.polymdegradstab.2004.05.002]
17. 17‐ Al‐AbdulRazzak S, Jabarin SA. Processing characteristics of poly(ethylene terephthalate): Hydrolytic and thermal degradation. Polymer International. 2002;51(2):164-173. [Link] [DOI:10.1002/pi.813]
18. 18‐ Zimmerman H, Kim NT. Investigations on thermal and hydrolytic degradation of poly(ethylene terephthalate). Polymer Engineering and Science. 1980;20(10):680-683. [Link] [DOI:10.1002/pen.760201008]
19. Ogden RW. Recent advances in the phenomenological theory of rubber elasticity. Rubber Chemistry and Technology. 1986;59(3):361-383. [Link] [DOI:10.5254/1.3538206]
20. Ogden RW. Non-linear elastic deformations. 1st Edittion. New York: Dover Publications, Inc; 1997. [Link] [DOI:10.1016/0264-682X(84)90061-3]
21. Valanis KC, Landel RF. Strain-energy function of a hyper-elastic material in terms of the extension ratios. Journal of Applied Physics. 1967;38(7):2997-3002. [Link] [DOI:10.1063/1.1710039]
22. Pancheri FQ, Dorfmann L. Strain controlled biaxial stretch: an experimental characterization of natural rubber. OCCAM, Oxford Centre for Collaborative Applied Mathematics. 2012;(28):1-26. [Link]
23. Nguyen N, Waas AM. Nonlinear, finite deformation, finite element analysis. Zeitschrift für angewandte Mathematik und Physik. 2016;67(3):1-24. [Link] [DOI:10.1007/s00033-016-0623-5]
24. de Souza Neto E, Peric D, Owen D. Computational methods for plasticity: theory and application. 1st Edition. London: John Wiley & Sons; 2008. p. 215-308. [Link] [DOI:10.1002/9780470694626]
25. Sun W, Chaikof EL, Levenston ME. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models. Journal of Biomechanical Engineering. 2008;130(6):061003. [Link] [DOI:10.1115/1.2979872]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.