Volume 19, Issue 8 (August 2019)                   Modares Mechanical Engineering 2019, 19(8): 1875-1887 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arefkhani H, Sadati S, Shahravi M. Nonlinear Dynamic Inversion Controller Design for a Satellite, Considering the Dynamics of Magnetorquers. Modares Mechanical Engineering 2019; 19 (8) :1875-1887
URL: http://mme.modares.ac.ir/article-15-19296-en.html
1- Flight Dynamic & Control Department, Aerospace Engineering Faculty, Malek-Ashtar University, Tehran, Iran
2- Flight Dynamic & Control Department, Aerospace Engineering Faculty, Malek-Ashtar University, Tehran, Iran , hsadati@mut.ac.ir
Abstract:   (6960 Views)
Full-Text [PDF 695 kb]   (2208 Downloads)    
Article Type: Original Research | Subject: Control
Received: 2018/04/22 | Accepted: 2019/01/20 | Published: 2019/08/12

References
1. Ovchinnikov MY, Penkov VI, Ilyin AA, Selivanov SA. Magnetic attitude control systems of the nanosatellite TNS-series. In: Röser HP, Sandau R, Valenzuela A, editors. Small satellites for earth observation: Selected proceedings of the 5th international symposium of the International Academy of Astronautics, Berlin, April 4-8 2005. Berlin: Walter de Gruyter; 2005. pp. 337-344. [Link]
2. Bolandi H, Ghorbani Vaghei B. Stable supervisory-adaptive controller for spinning satellite using only magnetorquers. IEEE Transactions on Aerospace and Electronic Systems. 2009;45(1):192-208. [Link] [DOI:10.1109/TAES.2009.4805273]
3. Wisniewski R. Satellite attitude control using only electromagnetic actuation [Dissertation]. Aalborg: Aalborg University; 1997. [Link] [DOI:10.2514/6.1997-3479]
4. Psiaki ML. Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation. Journal of Guidance Control and Dynamics. 2001;24(2):386-394. [Link] [DOI:10.2514/2.4723]
5. Liang J, Fullmer R, Chen YQ. Time-optimal magnetic attitude control for small spacecraft. 43rd IEEE Conference on Decision and Control (CDC), 14-17 Dec 2004, Nassau, Bahamas. Piscataway: IEEE; 2004. [Link]
6. Sivaprakash N, Shanmugam J. Neural network based three axis satellite attitude control using only magnetic torquers. 24th Digital Avionics Systems Conference, 30 Oct - 3 Nov 2005, Washington, DC, USA. Piscataway: IEEE; 2005. [Link]
7. Krogstad T, Gravdahl JT, Tondel P. Explicit model predictive control of a satellite with magnetic torquers. IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 27-29 June 2005, Limassol, Cyprus. Piscataway: IEEE; 2005. [Link]
8. Silani E, Lovera M. Magnetic spacecraft attitude control: A survey and some new results. Control Engineering Practice. 2005;13(3):357-371. [Link] [DOI:10.1016/j.conengprac.2003.12.017]
9. Lovera M, Astolfi A. Global magnetic attitude control of spacecraft in the presence of gravity gradient. IEEE Transactions on Aerospace and Electronic Systems. 2006;42(3):796-805. [Link] [DOI:10.1109/TAES.2006.248214]
10. Wood M, Chen WH, Fertin D. Model predictive control of low earth orbiting spacecraft with magneto-torquers. IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 4-6 Oct, 2006, Munich, Germany. Piscataway: IEEE; 2006. [Link] [DOI:10.1109/CACSD-CCA-ISIC.2006.4777100]
11. Torczynski DM, Amini R, Massioni P. Magnetorquer based attitude control for a nanosatellite testplatform. AIAA Infotech @ Aerospace 2010, 20-22 April 2010, Atlanta, Georgia. Reston VA: AIAA; 2010. [Link] [DOI:10.2514/6.2010-3511]
12. Reyhanoglu M, Hervas JR. Magnetic attitude control design for small satellites via slowly-varying systems theory. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 25-28 Oct 2012, Montreal, QC, Canada. Piscataway: IEEE; 2012. [Link] [DOI:10.1109/IECON.2012.6388706]
13. Oluwatosin AM, Hamam Y, Djouani K. Attitude control of a CubeSat in a circular orbit using magnetic actuators. 2013 Africon, 9-12 Sept 2013, Pointe-Aux-Piments, Mauritius. Piscataway: IEEE; 2013. [Link] [DOI:10.1109/AFRCON.2013.6757619]
14. Zhou B. Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control. Automatica. 2015;60:145-154. [Link] [DOI:10.1016/j.automatica.2015.07.003]
15. Kukreti S, Walker A, Putman P, Cohen K. Genetic algorithm based LQR for attitude control of a magnetically actuated CubeSat. AIAA Infotech @ Aerospace, 5-9 January 2015, Kissimmee, Florida. Reston VA: AIAA; 2015. [Link] [DOI:10.2514/6.2015-0886]
16. Kou Y, Yuan Q, Li C, Ji Y, Zhang Y. Application constraints of the three-axis stabilization magnetic control method based on LQR. Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), 21-23 July 2016, Harbin, China. Piscataway: IEEE; 2016. [Link] [DOI:10.1109/IMCCC.2016.144]
17. Yang Y. An efficient algorithm for periodic Riccati equation with periodically time-varying input matrix. Automatica. 2017;78:103-109. [Link] [DOI:10.1016/j.automatica.2016.12.028]
18. Yang Y. An efficient LQR design for discrete-time linear periodic system based on a novel lifting method. Automatica. 2018;87:383-388. [Link] [DOI:10.1016/j.automatica.2017.10.019]
19. Cao Y, Chen WH. Variable sampling-time nonlinear model predictive control of satellites using magneto-torquers. Systems Science & Control Engineering an Open Access Journal. 2014;2(1):593-601. [Link] [DOI:10.1080/21642583.2014.956841]
20. Sofyalı A, Jafarov EM, Wisniewski R. Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode. Aerospace Science and Technology. 2018;76:91-104. [Link] [DOI:10.1016/j.ast.2018.01.022]
21. Zanchettin AM, Calloni A, Lovera M. Robust magnetic attitude control of satellites. IEEE ASME Transactions on Mechatronics. 2013;18(4):1259-1268. [Link] [DOI:10.1109/TMECH.2013.2259843]
22. Wu G, Meng X, Wang F. Improved nonlinear dynamic inversion control for a flexible air-breathing hypersonic vehicle. Aerospace Science and Technology. 2018;78:734-743. [Link] [DOI:10.1016/j.ast.2018.04.036]
23. Alam M, Celikovsky S. On the internal stability of non-linear dynamic inversion: Application to flight control. IET Control Theory & Applications. 2017;11(12):1849-1861. [Link] [DOI:10.1049/iet-cta.2016.1067]
24. Lungu M, Lungu R. Adaptive neural network-based satellite attitude control by using the dynamic inversion technique and a VSCMG pyramidal cluster. Complexity. 2019;2019:1645042. [Link] [DOI:10.1155/2019/1645042]
25. Benenia M, Batatia H, Mora Camino F, Benslama M. Altitude control of a satellite using a feedback linearization. IET Conference on Control and Automation 2013: Uniting Problems and Solutions, 4-5 June 2013, Birmingham, UK. London: IET; 2013. [Link] [DOI:10.1049/cp.2013.0018]
26. Joshi G, Padhi R. Robust satellite formation flying using dynamic inversion with modified state observer. IEEE International Conference on Control Applications (CCA), 28-30 Aug 2013, Hyderabad, India. Piscataway: IEEE; 2013. [Link] [DOI:10.1109/CCA.2013.6662810]
27. Mattei G, Carletti A, Di Giamberardino P, Monaco S, Normand-Cyrot D. Adaptive robust redesign of feedback linearization for a satellite with flexible appendage. Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems (DYCOSS 2014), 24-26 Mar 2014, Rome, Italy. Springfield VA: American Astronautical Society; 2015. p. 685-697. [Link]
28. Ansari UZ, Bajodah AH. Spacecraft attitude control using robust generalized dynamic inversion. IEEE Conference on Control Technology and Applications (CCTA), 21-24 Aug 2018, Copenhagen, Denmark. Piscataway: IEEE; 2018. [Link] [DOI:10.1109/CCTA.2018.8511482]
29. Zipfel PH. Modeling and simulation of aerospace vehicle dynamics. Reston VA: AIAA Education; 2003. pp. 5-6. [Link]
30. Wie B. Space vehicle dynamics and control. Reston VA: AIAA; 1998. [Link]
31. Sidi MJ. Spacecraft dynamics and control: A practical engineering approach. Cambridge UK: Cambridge University Press; 1997. [Link] [DOI:10.1017/CBO9780511815652]
32. Slotine JJE, Li W. Applied nonlinear control. Upper Saddle River: Prentice-Hall; 1991. [Link]
33. Tavakoli AH, Kalhor A, Dehghan SMM. Implementation of three axis attitude controllers for evaluation of a micro-gravity satellite simulator. Journal of Space Science & Technology. 2012;5(2):59-68. [Persian] [Link]
34. Makovec KL. A nonlinear magnetic controller for three-axis stability of nanosatellites [Dissertation]. Blacksburg VA: Virginia Polytechnic Institute and State University; 2001. [Link]
35. Fakoor M, Sattarzadeh AR, Bakhtiari M. A novel 3-axis attitude stabilization with redundant thruster for a cube-satellite supported by reaction wheels. Modares Mechanical Engineering. 2016;16(4):391-402. [Persian] [Link]
36. Larson WJ, Wertz JR. Space mission analysis and design. Larson WJ, Wertz JR, editors. Torrance CA: Microcosm; 1992. [Link] [DOI:10.1007/978-94-011-2692-2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.