Volume 19, Issue 9 (2019)                   Modares Mechanical Engineering 2019, 19(9): 2165-2173 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanzadeh R, Azdast T, Doniavi A, Eungkee Lee R. Optimization of solid and radiation thermal conductivity of polymeric foams using response surface method based on a novel theoretical model. Modares Mechanical Engineering. 2019; 19 (9) :2165-2173
URL: http://journals.modares.ac.ir/article-15-19613-en.html
1- Mechanical Engineering Department, Engineering Faculty, Urmia University, Urmia, Iran
2- Mechanical Engineering Department, Engineering Faculty, Urmia University, Urmia, Iran , t.azdast@urmia.ac.ir
3- Dr. Foam Canada Research Center, Canada, Toronto, Canada
Abstract:   (729 Views)
Polymeric foams are one of the best candidates for thermal insulation. Accordingly, to investigate the thermal insulation properties of polymeric foams has attracted the attention of scientific communities in recent years. In this study, optimization of thermal insulation properties of polymeric foams is performed from solid and radiation thermal conductivities points of view. In this regard, a theoretical model based on cell size and foam density is developed. The results of the developed theoretical model are verified in comparison to various experimental results. Based on the results, the error of the theoretical model is lesser than 5%. Decreasing the foam density increases and decreases the solid and radiation thermal conductivity, respectively. Also, the radiation thermal conductivity is decreased by reducing the cell size. Response surface method (RSM) is applied in order to optimize the solid and radiation thermal conductivities. The results illuminate that the foam density of 23.5 kg.m-3 and cell size of 53 μm are the optimum conditions. At the optimum conditions, both of the solid and radiation thermal conductivities are lesser than 3 mW/mK. According to the results, the data obtained from developed theoretical model and RSM are in a good agreement. The total thermal conductivity is 30 mW/mK at optimum conditions which is a desirable value at aforementioned cell size range.
Full-Text [PDF 814 kb]   (408 Downloads)    

Received: 2018/04/30 | Accepted: 2019/02/6 | Published: 2018/09/1

1. Okolieocha C, Raps D, Subramaniam K, Altstädt V. Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - a review. European Polymer Journal. 2015;73:500-519. [Link] [DOI:10.1016/j.eurpolymj.2015.11.001]
2. Altan M. Thermoplastic foams: Processing, manufacturing, and characterization. In: Çankaya N, editor. Recent research in polymerization. London: IntechOpen; 2018. [Link] [DOI:10.5772/intechopen.71083]
3. Zenkert D, Burman M. Tension, compression and shear fatigue of a closed cell polymer foam. Composites Science and Technology. 2009;69(6):785-792. [Link] [DOI:10.1016/j.compscitech.2008.04.017]
4. Ruiz‐Herrero JL, Estravis S, Rodríguez‐Perez MA. Polymeric foams. In: Othmer K. Kirk-Othmer encyclopedia of chemical technology. Hoboken: John Wiley & Sons; 2015. [Link]
5. Notario B, Pinto J, Rodríguez-Pérez MA. Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties. Polymer. 2015;63:116-126. [Link] [DOI:10.1016/j.polymer.2015.03.003]
6. Wang G, Wang C, Zhao J, Wang G, Park CB, Zhao G. Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material. Nanoscale. 2017;9(18):5996-6009. [Link] [DOI:10.1039/C7NR00327G]
7. Kazemilari M, Mardani A, Streimikiene D, Zavadskas EK. An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach. Renewable Energy. 2017;102(Pt A):107-117. [Link] [DOI:10.1016/j.renene.2016.10.029]
8. Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews. 2011;15(3):1513-1524. [Link] [DOI:10.1016/j.rser.2010.11.037]
9. Arif Hasan M, Sumathy K. Photovoltaic thermal module concepts and their performance analysis: A review. Renewable and Sustainable Energy Reviews. 2010;14(7):1845-1859. [Link] [DOI:10.1016/j.rser.2010.03.011]
10. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and sustainable energy reviews. 2015;43:843-862. [Link] [DOI:10.1016/j.rser.2014.11.066]
11. Wang G, Zhao J, Mark LH, Wang G, Yu K, Wang C, et al. Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chemical Engineering Journal. 2017;325:632-646. [Link] [DOI:10.1016/j.cej.2017.05.116]
12. Jelle BP. Traditional, state-of-the-art and future thermal building insulation materials and solutions - properties, requirements and possibilities. Energy and Buildings. 2011;43(10):2549-2563. [Link] [DOI:10.1016/j.enbuild.2011.05.015]
13. Bernardo V, Laguna-Gutierrez E, Lopez-Gil A, Rodriguez-Perez MA. Highly anisotropic crosslinked HDPE foams with a controlled anisotropy ratio: Production and characterization of the cellular structure and mechanical properties. Materials & Design. 2017;114:83-91. [Link] [DOI:10.1016/j.matdes.2016.10.051]
14. Mills NJ. Handbook of polymeric foams and foam technology. D. Klempner D, Frisch KC, editors. Munich: Carl Hanser Verlag; 1993. [Link] [DOI:10.1016/0032-3861(93)90758-3]
15. Lee RE, Hasanzadeh R, Azdast T. A multi-criteria decision analysis on injection moulding of polymeric microcellular nanocomposite foams containing multi-walled carbon nanotubes. Plastics Rubber and Composites. 2017;46(4):155-162. [Link] [DOI:10.1080/14658011.2017.1300210]
16. Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P. Polymer nano-foams for insulating applications prepared from CO2 foaming. Progress in Polymer Science. 2015;41:122-145. [Link] [DOI:10.1016/j.progpolymsci.2014.07.001]
17. Notario B, Pinto J, Solorzano E, De Saja JA, Dumon M, Rodríguez-Pérez MA. Experimental validation of the Knudsen effect in nanocellular polymeric foams. Polymer. 2015;56:57-67. [Link] [DOI:10.1016/j.polymer.2014.10.006]
18. Gong P, Wang G, Tran MP, Buahom P, Zhai Sh, Li G, et al. Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon. 2017;120:1-10. [Link] [DOI:10.1016/j.carbon.2017.05.029]
19. Wang G, Zhao J, Wang G, Mark LH, Park CB, Zhao G. Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal. 2017;95:382-393. [Link] [DOI:10.1016/j.eurpolymj.2017.08.025]
20. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, et al. Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. European Polymer Journal. 2018;98:1-10. [Link] [DOI:10.1016/j.eurpolymj.2017.11.001]
21. Gong P, Buahom P, Tran MP, Saniei M, Park CB, Pötschke P. Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon. 2015;93:819-829. [Link] [DOI:10.1016/j.carbon.2015.06.003]
22. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW. Correlation between structure and thermal conductivity of organic aerogels. Journal of Non Crystalline Solids. 1995;188(3):226-234. [Link] [DOI:10.1016/0022-3093(95)00191-3]
23. Placido E, Arduini-Schuster MC, Kuhn J. Thermal properties predictive model for insulating foams. Infrared Physics & Technology. 2005;46(3):219-231. [Link] [DOI:10.1016/j.infrared.2004.04.001]
24. Kaemmerlen A, Vo C, Asllanaj F, Jeandel G, Baillis D. Radiative properties of extruded polystyrene foams: Predictive model and experimental results. Journal of Quantitative Spectroscopy and Radiative Transfer. 2010;111(6):865-877. [Link] [DOI:10.1016/j.jqsrt.2009.11.018]
25. Ferkl P, Pokorný R, Bobák M, Kosek J. Heat transfer in one-dimensional micro-and nano-cellular foams. Chemical Engineering Science. 2013;97:50-58. [Link] [DOI:10.1016/j.ces.2013.04.018]
26. Wang G, Zhao J, Yu K, Mark LH, Wang G, Gong P, et al. Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer. 2017;119:28-39. [Link] [DOI:10.1016/j.polymer.2017.05.016]
27. Daryadel M, Azdast T, Hasanzadeh R, Molani S. Investigation of cell wall thickness and impact strength of polypropylene microcellular nanocomposite foams produced by batch process. Journal of Science and Technology of Composites. 2018;5(1):135-142. [Persian] [Link]
28. Xu J, Wu T, Sun W, Peng C. Generalization and modelling of rigid polyisocyanurate foam reaction kinetics, structural units effect, and cell configuration mechanism. Cellular Polymers. 2017;36(6):285-312. [Link] [DOI:10.1177/026248931703600601]
29. Arduini-Schuster M, Manara J, Vo C. Experimental characterization and theoretical modeling of the infrared-optical properties and the thermal conductivity of foams. International Journal of Thermal Sciences. 2015;98:156-164. [Link] [DOI:10.1016/j.ijthermalsci.2015.07.015]
30. Campo‐Arnáiz RA, Rodríguez‐Pérez MA, Calvo B, De Saja JA. Extinction coefficient of polyolefin foams. Journal of Polymer Science Part B Polymer Physics. 2005;43(13):1608-1617. [Link] [DOI:10.1002/polb.20435]
31. Schellenberg J, Wallis M. Dependence of thermal properties of expandable polystyrene particle foam on cell size and density. Journal of Cellular Plastics. 2010;46(3):209-222. [Link] [DOI:10.1177/0021955X09350803]
32. Montzka SA, Butler JH, Elkins JW, Thompson TM, Clarke AD, Lock LT. Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature. 1999;398:690-694. [Link] [DOI:10.1038/19499]
33. Liu Sh, Duvigneau J, Julius Vancso G. Nanocellular polymer foams as promising high performance thermal insulation materials. European Polymer Journal. 2015;65:33-45. [Link] [DOI:10.1016/j.eurpolymj.2015.01.039]
34. Costeux S, Zhu L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer. 2013;54(11):2785-2795. [Link] [DOI:10.1016/j.polymer.2013.03.052]
35. Yeh SK, Liu YC, Chu CC, Chang KC, Wang SF. Mechanical properties of microcellular and Nanocellular thermoplastic polyurethane nanocomposite foams created using supercritical carbon dioxide. Industrial & Engineering Chemistry Research. 2017;56(30):8499-8507. [Link] [DOI:10.1021/acs.iecr.7b00942]
36. Martín‐de León J, Bernardo V, Rodríguez‐Pérez MÁ. Key production parameters to obtain transparent nanocellular PMMA. Macromolecular Materials and Engineering. 2017;302(12):1700343. [Link] [DOI:10.1002/mame.201700343]
37. Okolieocha C, Beckert F, Herling M, Breu J, Mülhaupt R, Altstädt V. Preparation of microcellular low-density PMMA nanocomposite foams: Influence of different fillers on the mechanical, rheological and cell morphological properties. Composites Science and Technology. 2015;118:108-116. [Link] [DOI:10.1016/j.compscitech.2015.08.016]
38. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Composites Science and Technology. 2005;65(15-16):2344-2363. [Link] [DOI:10.1016/j.compscitech.2005.06.016]

Add your comments about this article : Your username or Email:

Send email to the article author