Volume 19, Issue 1 (January 2019)                   Modares Mechanical Engineering 2019, 19(1): 159-169 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shabgard M, Gholipoor A, Mohammadpourfard M. Numerical and Experimental Investigation of Magnetic Field and Ultrasonic Vibrations Assisted EDM Process. Modares Mechanical Engineering 2019; 19 (1) :159-169
URL: http://mme.modares.ac.ir/article-15-22498-en.html
1- Manufacturing Department, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran , mrshabgard@tabrizu.ac.ir
2- Manufacturing Department, Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran
3- Chemical & Petroleum Engineering Department, Chemical Engineering Faculty, University of Tabriz, Tabriz, Iran
Abstract:   (4145 Views)
In this investigation, finite element method was used to model single discharge of ultrasonic vibrations and magnetic field assisted electrical discharge machining (MUEDM) process. Regarding good correlation between theoretical recast layer thickness obtained by process modeling and experimental recast layer thickness obtained by experiments with maximum error of 8.6%, the developed numerical model was used to find the temperature distribution at workpiece surface and predict the created craters dimensions on workpiece surface. The influences of applying ultrasonic vibrations to tool electrode simultaneous with applying external magnetic field around gap distance of electrical discharge machining (EDM) process, on plasma flushing efficiency, recast layer thickness and created craters dimensions were found by numerical and experimental analysis. The experimental and numerical results showed that applying magnetic field around gap distance and ultrasonic vibrations to tool electrode, simultaneously, at EDM process increases plasma flushing efficiency and decreases recast layer thickness. Also, applying magnetic field around gap distance and ultrasonic vibrations to tool electrode, simultaneously, at EDM process, leads to higher depth and volume of created craters on machined surface and lower craters radius.
Full-Text [PDF 1081 kb]   (2872 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/06/27 | Accepted: 2018/10/8 | Published: 2019/01/1

References
1. 1- Joshi SN, Pande SS. Intelligent process modeling and optimization of die-sinking electric discharge machining. Applied Soft Computing. 2011;11(2):2743-2755. [Link] [DOI:10.1016/j.asoc.2010.11.005]
2. Shabgard MR, Seyedzavvar MS. Correlation of input parameters with tool martial on the output parameters of electrical discharge machining process. Advanced Materials Research. 2012;445:994-999. https://doi.org/10.4028/www.scientific.net/AMR.445.994 [Link] [DOI:10.4028/scientific5/AMR.445.994]
3. Seyedzavvar MS, Shabgard MR. Influence of tool material on the electrical discharge machining of AISI H13 tool steel. Advanced Materials Research. 2012;445:988-993. https://doi.org/10.4028/www.scientific.net/AMR.445.988 [Link] [DOI:10.4028/scientific5/AMR.445.988]
4. Murthy VSR, Philip PK. Pulse train analysis in ultrasonic assisted EDM. International Journal of Machine Tools and Manufacture. 1987;27(4):469-477. [Link] [DOI:10.1016/S0890-6955(87)80019-6]
5. Shabgard MR, Gholipoor A, Baseri H. A review on recent developments in machining methods based on electrical discharge phenomena. The International Journal of Advanced Manufacturing Technology. 2016;87(5-8):2081-2097. [Link] [DOI:10.1007/s00170-016-8554-z]
6. Kremer D, Lebrun JL, Hosari B, Moisan A. Effects of ultrasonic vibrations on the performances in EDM. CIRP Annals. 1989;38(1):199-202. [Link] [DOI:10.1016/S0007-8506(07)62684-5]
7. Zhang JH, Lee TC, Lau WS, Ai X. Spark erosion with ultrasonic frequency. Journal of Materials Processing Technology. 1997;68(1):83-88. [Link] [DOI:10.1016/S0924-0136(96)02545-9]
8. Marinescu NI, Ghiculescu D, Jitianu G. Solutions for technological performances increasing at ultrasonic aided electrodischarge machining. International Journal of Material Forming. 2009;2:681. [Link] [DOI:10.1007/s12289-009-0585-7]
9. Shervani Tabar MT, Mobadersany N. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM. Ultrasonics. 2013;53(5):943-955. [Link] [DOI:10.1016/j.ultras.2012.11.008]
10. Shervani Tabar MT, Maghsoudi K, Shabgard MR. Effects of simultaneous ultrasonic vibration of the tool and the workpiece in ultrasonic assisted EDM. International Journal for Computational Methods in Engineering Science & Mechanics. 2013;14(1):1-9. [Link] [DOI:10.1080/15502287.2012.698696]
11. Gao C, Liu Z. A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. Journal of Materials Processing Technology. 2003;139(1-3);226-228. [Link] [DOI:10.1016/S0924-0136(03)00224-3]
12. Cao MR, Geng XD. Process research on high-speed small hole drilling by EDM combined with magnetic field and water dispersant. Advanced Materials Research. 2011;189-193:269-272. [Link] [DOI:10.4028/www.scientific.net/AMR.189-193.269]
13. Yeo SH, Murali M, Cheah HT. Magnetic field assisted micro electro-discharge machining. Journal of Micromechanics and Microengineering. 2004;14(11):1526. [Link] [DOI:10.1088/0960-1317/14/11/013]
14. Gholipoor A, Baseri H, Shakeri M, Shabgard MR. Investigation of the effects of magnetic field on near-dry electrical discharge machining performance. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 2014;230(4):744-751. [Link] [DOI:10.1177/0954405414558737]
15. Tomura S, Kunieda M. Analysis of electromagnetic force in wire-EDM. Precision Engineering. 2009;33(3):255-262. [Link] [DOI:10.1016/j.precisioneng.2008.07.004]
16. Govindan P, Gupta A, Joshi SS, Malshe A, Rajurkar KP. Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. Journal of Materials Processing Technology. 2013;213(7):1048-1058. [Link] [DOI:10.1016/j.jmatprotec.2013.01.016]
17. Shabgard M, Gholipoor A. Experimental investigation of the influence of tools ultrasonic vibrations and external magnetic field on machining characteristics at EDM process. Modares Mechanical Engineering. 2018;17(12):495-504. [Persian] [Link]
18. Shabgard MR, Gholipoor A, Mohammadpourfard M. Study of the effect of tools ultrasonic vibrations and external magnetic field on machined surface integrity at EDM process. Modares Mechanical Engineering. 2018;18(7):97-107. [Persian] [Link]
19. Shabgard MR, Arabzadeh Tabriz F, Gholipoor A. Experimental study of the effects of abrasive particle size and work piece hardness in magnetic abrasive flow machining. Modares Mechanical Engineering. 2016;16(8):131-138. [Persian] [Link]
20. Shabgard MR, Gholipoor A, Mohammadpourfard M. Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process. The International Journal of Advanced Manufacturing Technology. 2018;96(5-8):2657-2669. [Link] [DOI:10.1007/s00170-017-1487-3]
21. Shabgard MR, Farzaneh S, Gholipoor A. Investigation of the surface integrity characteristics in wire electrical discharge machining of Inconel 617. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017;39(3):857-864. [Link] [DOI:10.1007/s40430-016-0556-0]
22. Lee HT, Yur JP. Characteristic analysis on EDMed surfaces using Taguchi method approach. Materials and Manufacturing Processes. 2000;15(6):781-806. [Link] [DOI:10.1080/10426910008913021]
23. Eubank PT, Patel MR, Barrufet MA, Bozkurt B. Theoretical models of the electrical discharge machining process. III. the variable mass, cylindrical plasma model. Journal of Applied Physics. 1998;73(11):7900. [Link] [DOI:10.1063/1.353942]
24. Van Dijck FS, Dutré WL. Heat conduction model for the calculation of the volume of molten metal in electric discharges. Journal of Physics D Applied Physics. 1974;7(6):899. [Link] [DOI:10.1088/0022-3727/7/6/316]
25. Beck JV. Transient temperatures in a semi-infinite cylinder heated by a disk heat source. International Journal of Heat and Mass Transfer. 1981;24(10):1631-1640. [Link] [DOI:10.1016/0017-9310(81)90071-5]
26. Singh H. Experimental study of distribution of energy during EDM process for utilization in thermal models. International Journal of Heat and Mass Transfer. 2012;55(19-20):5053-5064. [Link] [DOI:10.1016/j.ijheatmasstransfer.2012.05.004]
27. Allen P, Chen X. Process simulation of micro electro-discharge machining on molybdenum. Journal of Materials Processing Technology. 2007;186(1-3):346-355. [Link] [DOI:10.1016/j.jmatprotec.2007.01.009]
28. Yadav V, Jain VK, Dixit PM. Thermal stresses due to electrical discharge machining. International Journal of Machine Tools and Manufacture. 2002;42(8):877-888. [Link] [DOI:10.1016/S0890-6955(02)00029-9]
29. Rajurkar KP, Pandit SM. Quantitative expressions for some aspects of surface integrity of electro discharge machined components. Journal of Engineering for Industry. 1984;106(2):171-177. [Link] [DOI:10.1115/1.3185929]
30. Di Bitonto DD, Eubank PT, Patel MR, Barrufet MA. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. Journal of Applied Physics. 1998;66(9):4095. [Link] [DOI:10.1063/1.343994]
31. Yeo SH, Kurnia W, Tan PC. Electro-thermal modeling of anode and cathode in micro-EDM. Journal of Physics D Applied Physics. 2007;40(8):2513. [Link] [DOI:10.1088/0022-3727/40/8/015]
32. Shabgard MR, Ahmadi R, Seyedzavvar MS, Nadimi Bavil Oliaei S. Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. International Journal of Machine Tools & Manufacture. 2013;65:79-87. [Link] [DOI:10.1016/j.ijmachtools.2012.10.004]
33. Shabgard MR Gholipoor A, Mohammadpourfard M. Numerical and experimental study of the effects of ultrasonic vibrations of tool on machining characteristics of EDM process. The International Journal of Advanced Manufacturing Technology. 2018;96(5-8):2657-2669. [Link] [DOI:10.1007/s00170-017-1487-3]
34. S Wong Y, Rahman M, S Lim H, Han H, Ravi N. Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. Journal of Materials Processing Technology. 2003;140(1-3):303-307. [Link] [DOI:10.1016/S0924-0136(03)00771-4]
35. Marafona J, Chousal JAG. A finite element model of EDM based on the Joule effect. International Journal of Machine Tools and Manufacture. 2006;46(6):595-602. [Link] [DOI:10.1016/j.ijmachtools.2005.07.017]
36. Shabgard MR, Khosrozadeh B. Study on the effect of ultrasonic assisted electrical discharge machining process on residual stress and hardness of Ti-6Al-4V alloy. Modares Mechanical Engineering. 2016;16(8):169-176. [Persian] [Link]
37. Shabgard MR, Nadimi Bavil Oliaei S, Seyedzavvar MS, Najadebrahimi A. Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. Journal of Mechanical Science and Technology. 2011;25(12):3173-3183. [Link] [DOI:10.1007/s12206-011-0905-y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.