Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2737-2749 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jhandydied S, Hassanzadeh H, Shakib S. The Energy and Exergy Analysis of a Solid Oxide Fuel Cell and Gas Turbine for Desalination System. Modares Mechanical Engineering 2019; 19 (11) :2737-2749
URL: http://mme.modares.ac.ir/article-15-22895-en.html
1- Mechanical Deparment, Engineering Faculty, University of Birjand, Birjand, Iran
2- Mechanical Deparment, Engineering Faculty, University of Birjand, Birjand, Iran , h.hassanzadeh@birjand.ac.ir
3- Mechanical Department, Engineering Faculty, Bozorgmehr University of Qaenat, Qaen, Iran
Abstract:   (2675 Views)
In this study, a hybrid system of fuel cell/gas turbine was designed and simulated with the aim of coupling with desalination systems. This system was analyzed from the viewpoints of the first and second law of thermodynamics. A parametric analysis was also performed to the determination of the system optimal performance. The studied parameters are fuel utilization factor, compressor pressure ratio, pre-reforming percentage, and the steam to carbon ratio. The results show that for the design parameters, the net power is 1215kW, the overall efficiency is 81.65% and the exergy efficiency is 60.7%. Also, by analyzing the rate of exergy destruction, it has been determined that the stack of fuel cells, combustion chamber, and pre-reforming have the most part in the destruction of exergy. Parametric analysis results show that increases in pressure, pre-reforming percentage, and fuel utilization factor have a positive effect on the system performance to a certain extent and the suitable ranges of the fuel utilization factor are from 0.8 to 0.85. On the other hand, by analyzing the effect of pressure and temperature on the system, it is determined that the temperature of the fuel cell cannot be constant. It was also shown that the efficiency of the system decreases with increasing steam to carbon ratio.
Full-Text [PDF 1065 kb]   (1755 Downloads)    
Article Type: Original Research | Subject: Fuel Cell
Received: 2018/07/9 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. 1- Sopian K, Wan Daud WR. Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy. 2006;31(5):719-727. [Link] [DOI:10.1016/j.renene.2005.09.003]
2. Sopian K, Shamsuddin AH, Nejat Veziroglu T. Solar hydrogen energy option for Malaysia. International Conference on Advances in Strategic Technology. Bangi, Selangor, Malaysia; 1995. [Link]
3. Ramakumar R, Chiradeja P. Distributed generation and renewable energy systems. 37th Intersociety Energy Conversion Engineering Conference. Washington; 2002. [Link]
4. Pirkandi J, Ghasemi M, Hamedi MH, Hosseini H. Role of hybrid systems of gas turbine and solid oxide fuel cells in energy supply. 4th Iranian Fuel Cell Seminar. Tehran: Shahid Rajaee Teacher Training University ;2010. [Persian] [Link]
5. Boyce MP. Gas turbine engineering handbook. 2nd Edition. Boston: Gulf Professional Publishing; 2002. [Link]
6. Williams MC. Fuel Cell Handbook. 7th Edition. Morgantown: EG&G Technical Services, Inc; 2004. [Link]
7. Hajimolana SA, Azlan Hussain M, Ashri Wan Daud WM. Mathematical modeling of solid oxide fuel cells: a review. Renewable and Sustainable Energy Reviews. 2011;15(4):1893-1917. [Link] [DOI:10.1016/j.rser.2010.12.011]
8. Zabihian F, Fung A. A review on modeling of hybrid solid oxide fuel cell systems. International Journal of Engineering (IJE). 2009;3(2):85-119. [Link]
9. Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z. A review of integration strategies for solid oxide fuel cells. Journal of Power Sources. 2010;195(3):685-702. [Link] [DOI:10.1016/j.jpowsour.2009.07.045]
10. Calise F, Palombo A, Vanoli L. Design and partial load exergy analysis of hybrid SOFC GT power plant. Journal of Power Sources. 2006;158(1):225-244. [Link] [DOI:10.1016/j.jpowsour.2005.07.088]
11. Calise F, Dentice d Accadia M, Vanoli L, von Spakovsky MR. Full load synthesis/design optimization of a hybrid SOFC-GT power plant. Energy. 2007;32(4):446-4458. [Link] [DOI:10.1016/j.energy.2006.06.016]
12. McPhail SJ, Aarva A, Devianto H, Bove R, Moreno A. SOFC and MCFC: commonalities and opportunities for integrated research. International Journal of Hydrogen Energy. 2011;36(16):10337-10345. [Link] [DOI:10.1016/j.ijhydene.2010.09.071]
13. Calise F, Dentice d Accadia M, Vanoli L, von Spakovsky MR. Single-level optimization of a hybrid SOFC GT power plant. Journal of Power Sources. 2006;159(2):1169-1185. [Link] [DOI:10.1016/j.jpowsour.2005.11.108]
14. Larminie J, Dicks A. Fuel cell system explained. Hoboken: J. Wiley; 2004. [Link] [DOI:10.1002/9781118878330]
15. Singhal SC, Kendall K. High temperature solid oxide fuel cells. 1st Edition. Amsterdam: Elsevier; 2003. [Link] [DOI:10.1016/B978-185617387-2/50018-0]
16. Yang WJ, Park SK, Kim TS, Kim JH, Sohn JL, Ro ST. Design performance analysis of pressurized solid oxide fuel cell/gas turbine hybrid systems considering temperature constraints. Journal of Power Sources. 2006;160(1):462-473. [Link] [DOI:10.1016/j.jpowsour.2006.01.018]
17. Zabihian F, Fung AS. Thermodynamic sensitivity analysis of hybrid system based on solid oxide fuel cell. Sustainable Energy Technologies and Assessments. 2014;6:51-59. [Link] [DOI:10.1016/j.seta.2013.12.004]
18. Granovskii M, Dincer I, Rosen MA. Performance comparison of two combined SOFC gas turbine systems. Journal of Power Sources. 2007;165(1):307-314. [Link] [DOI:10.1016/j.jpowsour.2006.11.069]
19. Buonomano A, Calise F, Dentice d' Accadia M, Palombo A, Vicidomini M. Hybrid solid oxide fuel cells-gas turbine systems for combined heat and power: a review. Applied Energy. 2015;156:32-85. [Link] [DOI:10.1016/j.apenergy.2015.06.027]
20. Park SK, Kim TS. Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine systems. Journal of Power Sources. 2006;163(1):490-499. [Link] [DOI:10.1016/j.jpowsour.2006.09.036]
21. Zhang X, Su S, Chen J, Zhao Y, Brandon N. A new analytical approach to evaluate and optimize the performance of an irreversible solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy. 2011;36(23):15304-15312. [Link] [DOI:10.1016/j.ijhydene.2011.09.004]
22. Ahmadi R, Pourfatemi SM, Ghaffari S. Exergoeconomic optimization of hybrid system of GT, SOFC and MED implementing genetic algorithm. Desalination. 2017;411:76-88. [Link] [DOI:10.1016/j.desal.2017.02.013]
23. Farzad MA, Hasanzadeh H, Safavinejad A, Aghaebrahimi MR. Energy and exergy analysis and optimization of a cogeneration system based on solid oxide fuel cell for residential applications Journal of Solid and Fluid Mechanics. 2016;5(4):213-228. [Persian] [Link]
24. Pirkandi J, Mahmoodi M, Amanloo F. Thermodynamic modeling of an auxiliary power unit equipped with tubular solid oxide fuel cell with application in aerospace power system. Modares Mechanical Engineering. 2015;15(6):132-144. [Persian] [Link]
25. Ni M. Modeling of SOFC running on partially pre-reformed gas mixture. International Journal of Hydrogen Energy. 2012;37(2):1731-1745. [Link] [DOI:10.1016/j.ijhydene.2011.10.042]
26. Bao C, Wang Y, Feng D, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science. 2018;66:83-140. [Link] [DOI:10.1016/j.pecs.2017.12.002]
27. Akkaya AV, Sahin B, Erdem HH. Thermodynamic model for exergetic performance of a tubular SOFC module. Renewable Energy. 2009;34(7):1863-1870. [Link] [DOI:10.1016/j.renene.2008.11.017]
28. Shirazi A, Aminyavari M, Najafi B, Rinaldi F, Razaghi M. Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy. 2012;37(24):19111-19124. [Link] [DOI:10.1016/j.ijhydene.2012.09.143]
29. Pirkandi J, Ghasemi M, Hamedi MH. Performance comparison of direct and indirect hybrid systems of gas turbine and solid oxide fuel cell from thermodynamic and exergy viewpoints. Modares Mechanical Engineering. 2012;12(3):117-133. [Persian] [Link]
30. Akkaya AV. Electrochemical model for performance analysis of a tubular SOFC. International Journal Energy Research. 2007;31(1):79-98. [Link] [DOI:10.1002/er.1238]
31. Ghanbari Bavarsad P. Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy. 2007;32(17):4591-4599. [Link] [DOI:10.1016/j.ijhydene.2007.08.004]
32. Chan SH, Low CF, Ding OL. Energy and exergy analysis of simple solid-oxide fuel-cell power systems. Journal of Power Sources. 2002;103(2):188-200. [Link] [DOI:10.1016/S0378-7753(01)00842-4]
33. Mirashraf SM. Evaluation performance of multistage distillation in combination with distributed generation systems of electricity and heat and absorption chiller. 3rd International Conference on Applied and Researches in Science and Engineering. Istanbul: Marmara University; 2018. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.