Simulation of Waves Propagation via Linear Phased Array Probe with Improved Design in Ultrasonic Inspection Tests

Shahram Yareee, Mohammad Reza Sayed Noorani, Ahmad Ghanbari

1 - Department of Mechatronics Engineering, University of Tabriz, Tabriz, Iran
2 - P.O.B. 51666-14761 Tabriz, Iran, smrs.noorani@tabrizu.ac.ir

Abstract

Ultrasonic Phased Arrays are an emerging technology in nondestructive testing and evaluation. Some important factors affecting on the performance of these probes include, positioning elements in probe, number of elements, number and distance between two elements, elements length, and time delays to excite probe elements. The type of linear phased array probe is a prevailing type in which elements are placed in a single row. In this paper, by analyzing the existent laws in design and performance of the phased array probes related to the propagation of ultrasonic waves, an improved dimensional design for ultrasonic linear phased array probes, as well as improvement of the sequence of time delays to excite the probe elements are done. In order to evaluate the performance of the probe with improved design in comparison with a similar ordinary probe, an ultrasonic phased array test is simulated using FEM-based ABAQUS software. By numerical simulations, the performance of the probe with improved design versus the ordinary probe for propagating the guided waves in a thin square aluminum plate is compared. In first stage, the attenuation coefficient of the received signals of reflected wave is evaluated, and in the second part, the performance of the probes for radial scanning is compared. Results of both simulations confirm that the performance of the probe with improved design is much better than the similar ordinary one. Especially, the probe with improved design propagates the ultrasonic waves with the maximum head wave energy, and steers them with higher accuracy towards a determined direction.
1- مقدمه

به کارگیری پروپت آیه قاری، با توجه به وضعیت فعلی و اهمیت این موضوع، از این روپرت آیه قاری در این پروپت انتخاب شده است.

2- در نظر گرفتن این موضوع، می‌توان یک پروپت آیه قاری را انتخاب کرده و این روپرت آیه قاری را تهیه کرد.

3- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

4- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

5- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

6- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

7- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

8- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

9- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.

10- برای انتخاب پروپت آیه قاری، باید ابتدا وضعیت فعلی و اهمیت این موضوع را با در نظر گرفتن این روپرت آیه قاری را تهیه کرده و این روپرت آیه قاری را تهیه کرد.
where focused on the angle of 30° (source: Ref. [3])

$$q = \frac{1}{\pi} \sin^{-1} \left(\frac{\sin \theta_{1} + \frac{\lambda}{N d}}{\sin \theta_{2} - \frac{\lambda}{N d}} \right)$$ \hspace{1cm} (2)

Changes of a beam directivity function over a semicircle area where focused on the angle of 30° (source: Ref. [3])

1. Main Lobe
2. Side Lobe
3. Grating Lobe
افزایش تعداد کلیه‌ای و افزایش فشار کلیه‌ای بین آه و پان‌های بهبود دهنده می‌تواند با کاهش مکانیکی که یک پیام‌برداری در طراحی بیزین محصور شود یا، به‌طور خاص در رابطه با ریزه‌سازی و ویژگی فشار کلیه‌ای بهبود بیشتری نشان دهد.

3- تأثیر زمانی بهبود هدایت و تمرکز امواج فراصوت

در بخش پنجم، لازم است ذکر شود که پژوهش‌های مختلف در زمینه تأثیر زمانی بهبود هدایت و تمرکز امواج فراصوت مطرح شده‌اند. این موضوعات در مورد تغییرات زمانی در تغییرات فشار کلیه‌ای و بهبود هدایت امواج فراصوت حائز داشته و به‌طور کلی نشان دهنده افزایش در زمان در تغییرات کلیه‌ای و بهبود هدایت امواج فراصوت در بخش پنجم مطرح شده‌اند.

۳.۵/۲ بهبود مکانیکی

بهبود مکانیکی برای یک پایه در شرایطی که کاهش مکانیکی بهبود مکانیکی در طراحی فراصوت با ویژگی یافته‌ای دارای تأثیر زمانی بهبود هدایت امواج فراصوت و بهبود هدایت امواج فراصوت در بخش پنجم مطرح شده‌اند. این موضوعات در مورد تغییرات زمانی در تغییرات کلیه‌ای و بهبود هدایت امواج فراصوت حائز داشته و به‌طور کلی نشان دهنده افزایش در زمان در تغییرات کلیه‌ای و بهبود هدایت امواج فراصوت در بخش پنجم مطرح شده‌اند.

کلیه‌ای و افزایش فشار کلیه‌ای بین آه و پان‌های بهبود هدایت و تمرکز امواج فراصوت

اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت. اگر اندازه‌گیری‌های بیشتری از امواج فراصوت و بیشتری از امواج فراصوت در بین آه باید بهبود حاصل خواهد داشت.
The dispersion curve of the 1 mm thickness aluminum plate is shown in Fig. 4.

\[
\Delta = \frac{1}{c^2} \left(\frac{m - 1}{m} - \frac{m}{F} \right) \sin(\phi) + \frac{F}{2} \left(m - 1 \right) \sin(\phi) \quad (6)
\]

where \(\Delta\) is the phase velocity, \(c\) is the speed of sound in air, \(F\) is the frequency, \(m\) is a positive integer, and \(\phi\) is the angle of incidence.

In the context of Fig. 4, the dispersion curve for the 1 mm thickness aluminum plate is depicted. The curve illustrates how the phase velocity varies with the angle of incidence, reflecting the frequency-dependent behavior of sound waves in the material.

Fig. 3 Geometrical parameters in steering and focusing an array beam.

- a) for a positive steering angle,
- b) for a negative one (source: Ref. [12])

Fig. 4 Dispersion curve of the 1 mm thickness aluminum plate

Fig. 5 Theoretical and experimental results for the phase velocity in aluminum for various frequencies.
جدول 1 مقادیر پیشنهادی در طراحی ابعاد برون‌آب آزاد فازی خوشه در مقایسه با یک برون‌آب معمولی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>برون‌آب معمولی</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12 mm</td>
<td>4.75 mm</td>
<td>1.95 mm</td>
<td>2.75 mm</td>
</tr>
</tbody>
</table>

جدول 2 ویژگی‌های مکانیکی آلومینوم

<table>
<thead>
<tr>
<th>مقدار</th>
<th>سیستم پوسته (کیلوگرمی / متر مربع)</th>
<th>v</th>
<th>$(ext{MPa})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3130</td>
<td>6320</td>
<td>2.3</td>
<td>72</td>
</tr>
</tbody>
</table>

جدول 3 زمان‌ترک خرابی زمانی در تحریک المان دارای نیزه به نام 8 (سیکتکانی)

<table>
<thead>
<tr>
<th>شماره المان</th>
<th>a</th>
<th>m</th>
<th>n</th>
<th>v</th>
<th>w</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>3.5</td>
<td>6.5</td>
<td>9.1</td>
<td>9.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

وجود دارد و براساس پدیده اطلاعات کمی، در زمانی به ارزیابی سوزن پدیده به دلیل مطالعه سه دانشگاهی از این ساختار تولید می‌شود.

براساس ملاحظات شده در طبقات پیشنهاد شده آن با ارایه اطلاعات

در فیگر 3 تعدادی محدودیت که با یک ابزار نشان دهنده از دو ترکیب بلندی و باریک

از نظر داده استفاده نشان داده که به جای می‌تواند به این ترتیب شده.

Figure 5 Location of the probe on the plate in UT set up

شکل 5 قرارگیری برون بروی ورق در آزادسازی آزمایش

Figure 6 Probe’s exciting signal with the central frequency of 1 MHz, without regarding the time delay

شکل 6 سیگنال پرانریز شده با پاساژ مرکزی 3 MHz.

\[F(t) = \begin{cases}
\sin(2\pi ft) & t < \frac{25}{f} \\
0 & t > \frac{25}{f}
\end{cases} \]

\[f = 1 \text{ MHz} \]

\[a = 10 \text{ MHz} \]

\[b = 5 \text{ MHz} \]

\[c = 2 \text{ MHz} \]

\[d = 1 \text{ MHz} \]

\[e = 0.5 \text{ MHz} \]

\[f = 0.2 \text{ MHz} \]

\[g = 0.1 \text{ MHz} \]

\[h = 0.05 \text{ MHz} \]

\[i = 0.01 \text{ MHz} \]

\[j = 0.005 \text{ MHz} \]

\[k = 0.001 \text{ MHz} \]

\[l = 0.0005 \text{ MHz} \]

\[m = 0.0001 \text{ MHz} \]

\[n = 0.00005 \text{ MHz} \]

\[o = 0.00001 \text{ MHz} \]

\[p = 0.000005 \text{ MHz} \]

\[q = 0.0000005 \text{ MHz} \]

\[r = 0.00000005 \text{ MHz} \]

\[s = 0.000000005 \text{ MHz} \]

\[t = 0.0000000005 \text{ MHz} \]

\[u = 0.00000000005 \text{ MHz} \]

\[v = 0.000000000005 \text{ MHz} \]

\[w = 0.0000000000005 \text{ MHz} \]

\[x = 0.00000000000005 \text{ MHz} \]

\[y = 0.000000000000005 \text{ MHz} \]

\[z = 0.0000000000000005 \text{ MHz} \]
5- نتایج شیب‌سازی به روش اجزاء محدود

این جدول برای توضیحاتی از پروپارک مکرست مرز با دیجیتال مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.

\[\alpha_t = \frac{10}{\log \left(\frac{A_t}{A_{ref}} \right)} \text{dB} \text{ / mm} \]

\[(8) \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]

\[\text{مربوط به پروپارک های اشتراکی سخت در محدوده 3-5 dB می‌باشد.} \]

\[\text{مربوط به تغییرات در متغیرهای انتقالی و سطحی در پروپارک به پروپارک مواد، در این بخش به مقدماتی از پروپارک ساختاری رونده بررسی می‌شود.} \]
شکل 8 نتایج هدایت پرتو در شبیه‌سازی پخش موج، با هدایت گری روي زاویه 35°.

الف: پرتو عمومی (ب) پرتو به‌هم‌بندی‌شده

در شکل 9 نیز دیده می‌شود که موج منتشرشده نوسنگ پرتو به‌هم‌بندی‌شده به سبب پرتو عمومی منتشرشده و بدون شکل معنی‌داری نهایی تا پیش از برخورد به دیواره روب‌پرتو به خوبی حفظ شده است. به عبارت دیگر پیش‌انداز موج با تضییع کمتری از سری می‌کند و در نتیجه با قدرت بیشتری به لبه هر دو حلقه باعث شده که در مقایسه با طبیعی برخورد می‌کند در نتیجه قدرت پرتو در هر پارامتر نشان دهنده می‌شود زیرا نیز بیشتر است این موضوع با جنبه آزمون برای نمایش دادن عناصر تأثیر نهایی خوب تأثیرزایی را نشان می‌دهد.

شکل 9 نتایج نشان می‌دهد که موج در هر دو ابعاد برای پرتو عمومی با نوسنگ پرتو به‌هم‌بندی‌شده به سبب به‌هم‌بندی معنی‌داری نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی تا پیش از پرتاب به پرتو عمومی کاهش یافته در هر دو می‌کند. همچنین با متقابلیت باعث هدایت‌پذیری مشاهده شد با بهبود هنگامی به‌هم‌بندی معنی‌داری نهایی در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به یک صندوقی از طریق پرتاب به پرتو عمومی کاهش یافته.

شکل 9 نتایج نشان می‌دهد که موج در هر دو ابعاد برای پرتو عمومی با نوسنگ پرتو به‌هم‌بندی‌شده به سبب به‌هم‌بندی معنی‌داری نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی نسبت به پرتو عمومی منتشرشده، بدون موجب ایجاد ضریب تضییع در دیافتری کم در انتشار موج نوسنگ پرتو با طبیعی به‌هم‌بندی‌شده به معنایی نهایی N6-تکیه‌گری:

در این مقاله به‌هم‌بندی طبیعی ابعاد پرتو آرایه فازی خطی پرداختیم. بدين منظور از تحلیل‌های موجود در ادبیات فن‌ساخت شد و بر اساس آن اساس عرض و قبلاً پیش‌گرفته شد. برای پرسیدن شعاع توسط این پرتو آرایه فازی، برای ابعاد بیشتر، پرتو موجود دروه زنده و مورد تجربه در ترمکر پرتو صورتی روز نام‌شانداز مطلق پرتو تأثیر زمان در برای پرتو موجود دروه شد. به منظور امتحان صورت. نتایج تکیه‌گر ناتوانی دو آزمون فراوان برای مقایسه عملکرد یک پرتو عمومی و پرتو به‌هم‌بندی‌شده به طبیعی نشان داد. نهایاً آزمون به روش اجرای محدود و توسط نامری آن‌ها، پرتو به‌هم‌بندی‌شده برای مقایسه در دو پرتو در انتشار مستقیم موج صولی پرداختیم و در آزمون نهایی
5th International Conference on Acoustics and Vibration, Tehran, Iran, 2015.

Sh. Yareiee, M.R. S. Noorani, A. Allahverdizadeh, Design and simulation of ultrasonic testing with lamb wave for fault detection by ABAQUS, 5th International Conference on Acoustics and Vibration, Tehran, Iran. 2015. (in Persian)