Volume 19, Issue 9 (2019)                   Modares Mechanical Engineering 2019, 19(9): 2215-2226 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soroush M, MalekzadehFard K, Sharavi M. Experimental Measurement of Parameters for High Velocity Impact Simulation on Composite Plate Based On PDM and CZM. Modares Mechanical Engineering. 2019; 19 (9) :2215-2226
URL: http://journals.modares.ac.ir/article-15-24632-en.html
1- Aerospace Engineering Faculty, Malek-e-Ashtar University of Technology, Tehran, Iran
2- Aerospace Engineering Faculty, Malek-e-Ashtar University of Technology, Tehran, Iran , shahravi@mut.ac.ir
Abstract:   (1272 Views)
This paper introduces the initiation and evolution of interlaminar and intralaminar damage in the laminated composite plate under high-velocity impact with the finite element model. Damage in composite layers and delamination between layers are defined based on progressive damage model and cohesive zone modeling. Interlaminar and intralaminar damage initiation are predicted with Hashin criterion and traction-separation law and the damage evolution is predicted with reducing the value of stiffness based on fracture toughness energy that is available in ABAQUS. In this study, needed parameters for the finite element model such as fracture toughness energy are measured experimentally with some tests such as CT and DCB. The finite element model is valid with a velocity comparison of the impactor after impact in experimental impact test with 160J and the numerical simulation. The low percent difference between the experimental and numerical impact results is achieved and thus the needed parameters for simulation is extracted correctly. The present paper introduces a validated, accurate and low-cost finite element model with damage consideration and perforation of impactor for a laminated composite under the high-velocity impact that needed parameters could be measured experimentally.
 
Full-Text [PDF 2482 kb]   (108 Downloads)    

Received: 2018/09/1 | Accepted: 2019/02/7 | Published: 2019/09/1

References
1. Abrate S. Impact on composite structures. New York: Cambridge University Press; 2005. [Link]
2. Chou SC, Orringer O, Rainey JH. Post-failure behavior of laminates: II - stress concentration. Journal of Composite Materials. 1977;11(1):71-78. [Link] [DOI:10.1177/002199837701100108]
3. Tan SC. A progressive failure model for composite laminates containing openings. Journal of Composite Materials. 1991;25(5):556-577. [Link] [DOI:10.1177/002199839102500505]
4. Shokrieh MM. Progressive fatigue damage modeling of composite materials [Dissertation]. Montréal: McGill University; 1996. [Link]
5. Camanho PP, Matthews FL. A progressive damage model for mechanically fastened joints in composite laminates. Journal of Composite Materials. 1999;33(24):2248-2280. [Link] [DOI:10.1177/002199839903302402]
6. Torabizadeh MA, Shokrieh MM, Fereidoon A. Progressive damage analysis of glass-epoxy laminated composites under static tensile loading at low temperature. Journal of Modeling in Engineering. 2010;8(21):33-43. [Persian] [Link]
7. Shokrieh MM, Ghajar M, Salamattalab M, Madoliat R. Progressive damage modeling of laminated composites by considering simultaneous effects of interlaminar and intralaminar damage mechanisms. Journal of Science and Technology of Composites. 2015;2(2):1-8. [Persian] [Link]
8. Taheri Behrooz F, Bakhshan H. Tensile characteristic length determination of nothced woven composite laminates by means of progressive damage analysis. Modares Mechanical Engineering. 2015;15(8):360-370. [Persian] [Link]
9. Pinho ST, Robinson P, Iannucci L. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Composites Science and Technology. 2006;66(13):2069-2079. [Link] [DOI:10.1016/j.compscitech.2005.12.023]
10. Dassios KG, Kostopoulos V, Steen M. Intrinsic parameters in the fracture of carbon/carbon composites. Composites Science and Technology. 2005;65(6):883-897. [Link] [DOI:10.1016/j.compscitech.2004.10.021]
11. Li X, Hallett SR, Wisnom MR, Zobeiry N, Vaziri R, Poursartip A. Experimental study of damage propagation in over-height compact tension tests. Composites Part A Applied Science and Manufacturing. 2009;40(12):1891-1899. [Link] [DOI:10.1016/j.compositesa.2009.08.017]
12. ASTM. E399-05: Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials [Internet]. West Conshohocken PA: American Standard of Testing Methods; 2005 [Unknown cited]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/E399-05.htm [Link]
13. Shokrieh MM, Ghajar M. Simulation of mode I strain energy release rate for rectangular laminated composite plate using a simple finite element model. Journal of Advanced Design and Manufacturing Technology. 2010;3(4):1-8. [Persian] [Link]
14. Khaliji V, Yazdani M, Choupani N. Experimental determination of translaminar fracture toughness of a woven glass epoxy composite using new fixture. Modares Mechanical Engineering. 2016;15(11):330-338. [Persian] [Link]
15. ASTM. D5528-01: Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites [Internet]. West Conshohocken PA: American Standard of Testing Methods; 2007 [Unknown cited]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D5528-01.htm. [Link]
16. ASTM. D6671/D6671M-19: Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites [Internet]. West Conshohocken PA: American Standard of Testing Methods; 2007 [Unknown cited]. Available from: https://www.astm.org/Standards/D6671.htm [Link]
17. Dias GF, De Moura MFSF, Chousal JAG, Xavier J. Cohesive laws of composite bonded joints under mode I loading. Composite Structures. 2013;106:646-652. [Link] [DOI:10.1016/j.compstruct.2013.07.027]
18. Li G, Li C. An analytical analysis of energy release rate in bonded composite joints in a mode I condition. Composites Part B Engineering. 2013;44(1):704-713. [Link] [DOI:10.1016/j.compositesb.2012.01.082]
19. De Gracia J, Boyano A, Arrese A, Mujika F. A new approach for determining the R-curve in DCB tests without optical measurements. Engineering Fracture Mechanics. 2015;135:274-285. [Link] [DOI:10.1016/j.engfracmech.2015.01.016]
20. Benzeggagh ML, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology. 1996;56(4):439-449. [Link] [DOI:10.1016/0266-3538(96)00005-X]
21. Kariman Moghadam A, Rahnama S, Maleki S. Experimental and numerical investigation of crack growth in adhesive bonding of two composite plates under mode I. Modares Mechanical Engineering. 2016;16(5):271-280. [Persian] [Link]
22. Shokrieh MM, Damirchiloo S, Salamat Talab M. Determination of cohesive zone parameters in mode I delamination growth of a double cantilever beam specimen using the inverse method. Journal of Science and Technology of Composites. 2017;4(1):83-90. [Persian] [Link] [DOI:10.1016/j.tafmec.2017.02.009]
23. Camanho PP, Davila CG, De Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials. 2003;37(16):1415-1438. [Link] [DOI:10.1177/0021998303034505]
24. Shokrieh MM, Zeinedini A. Prediction of strain energy release rate of asymmetric double cantilever composite beam using equivalent lay-up for mixed-mode I/II delamination. Modares Mechanical Engineering. 2014;13(13):214-225. [Persian] [Link]
25. Choupani N, Shameli M. Experimental and numerical investigation of in-plane interlaminar fracture of woven glass-epoxy composite under mixed-mode loading conditions. Aerospace Mechanics Journal. 2018;14(1):39-54. [Persian] [Link]
26. Mohammadi R, Saeedifar M, Ahmadi Najafabadi M, Hosseini Toudeshky H. Acoustic emission based methodology to evaluate the fracture toughness in carbon/epoxy composites. Amirkabir Journal of Mechanical Engineering. 2017;49(2):379-386. [Persian] [Link]
27. Khalili SMR, Soroush M, Davar A, Rahmani O. Finite element modeling of low-velocity impact on laminated composite plates and cylindrical shells. Composite Structures. 2011;93(5):1363-1375. [Link] [DOI:10.1016/j.compstruct.2010.10.003]
28. Soroush M, Malekzade Fard K, Shahravi M. Finite element simulation of interlaminar and intralaminar damage in laminated composite plates subjected to impact. Latin American Journal of Solids and Structures. 2018;15(6):e90. [Link] [DOI:10.1590/1679-78254609]
29. Dssault System's Simulia Corp. ABAQUS 2017 user's manual [Internet]. Providence RI: Dssault System's Simulia Corp; 2017 [Unknown cited]. Available from: https://www.3ds.com/products-services/simulia/ [Link]
30. Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials. 1973;7(4):448-464. [Link] [DOI:10.1177/002199837300700404]
31. González Juan EV. Simulation of interlaminar and intralaminar damage in polymer-based composites for aeronautical applications under impact loading [Dissertation]. Girona: Universitat de Girona; 2011. [Link]
32. Sun CT, Han C. A method for testing interlaminar dynamic fracture toughness of polymeric composites. Composites Part B Engineering. 2004;35(6-8):647-655. [Link] [DOI:10.1016/j.compositesb.2004.04.006]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author