Volume 19, Issue 3 (March 2019)                   Modares Mechanical Engineering 2019, 19(3): 665-675 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaedamini Harouni A, Hashemi Mehne S. Multi-Disciplinary Multi-Objective Shape Optimization of Orion Type Re-entry Capsule. Modares Mechanical Engineering 2019; 19 (3) :665-675
URL: http://mme.modares.ac.ir/article-15-24960-en.html
1- Multi-Disciplinary Multi-Objective Optimization of Orion Type Re-Entry Capsule
2- Multi-Disciplinary Multi-Objective Optimization of Orion Type Re-Entry Capsule , hmehne@ari.ac.ir
Abstract:   (3881 Views)
Multidisciplinary shape optimization of a re-entry capsule with aero-thermodynamic, trajectory, stability and the geometry considerations are presented in this research. The method is based on decomposition of the underlying problem into disciplinary routines performing separated analysis for each goal.The current research is separated into four main components: shape parameterization of re-entry capsule, aero-thermodynamic analysis, re-entry trajectory analysis and optimization.The re-entry capsule that is studied here belongs to the family of the Orion-like capsule and its shape composed of three analytic surfaces: a spherical nose, a ring section and a rear conical part. The objectives of the optimization are maximizing volumetric efficiency, minimizing longitudinal stability derivative, and minimizing the ballistic coefficient, subject to constraints on geometry, heating load, and deceleration. Utilizing a multi-objective genetic algorithm will result in a collection of non-dominated Pareto optimal solutions. Then, the multi-disciplinary multi-objective optimization process allows finding a Pareto front of the best shapes. Resulting optimal solutions obviously show the compromises among volumetric efficiency, longitudinal stability and ballistic coefficient. In the end, the results containing dimension’s characteristics of the re-entry capsule is presented.
 
Full-Text [PDF 871 kb]   (2309 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2018/09/9 | Accepted: 2018/11/3 | Published: 2019/03/1

References
1. Adami A, Nosratollahi M, Mortazavi M, Hosseini M. Multidisciplinary design optimization of a manned reentry mission considering trajectory and aerodynamic configuration. Proceedings of 5th International Conference on Recent Advances in Space Technologies- RAST2011, 9-11 June, 2011, Istanbal, Turkey. Piscataway: Institute of Electrical and Electronics Engineers; 2011. p. 598-603. [Link] [DOI:10.1109/RAST.2011.5966908]
2. Theisinger JE, Braun RD. Multi-objective hypersonic entry aeroshell shape optimization. Journal of Spacecraft and Rockets. 2009;46(5):957-966. [Link] [DOI:10.2514/1.41136]
3. Priyadarshi P, Mittal S. Multi-objective multi-disciplinary design optimization of a semi-ballistic reentry module.13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 13-15 September, 2010, Fort Worth, Texas. Reston: American Institute of Aeronautics and Astronautics; 2010. [Link] [DOI:10.2514/6.2010-9127]
4. Shi Y, Xu M, Wang ZM. Integrated optimization of aerodynamic shape with trajectory for aircaft in conceptual design. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, 12-14 August, 2011, Harbin, China. Piscataway: The Institute of Electrical and Electronics Engineers; 2011. p. 3808-3811 [Link] [DOI:10.1109/EMEIT.2011.6023071]
5. Arora R, Kumar P. Aerodynamic shape optimization of a re-entry capsule. AIAA Atmospheric Flight Mechanics Conference and Exhibit, 11-14 August, 2003, Austin, Texas. Reston: American Institute of Aeronautics and Astronautics; 2003. [Link] [DOI:10.2514/6.2003-5394]
6. Nosratollahi M, Hosseini M, Adami A. Multidisciplinary design optimization of a controllable reentry capsule for minimum landing velocity. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12-15 April, 2010, Orlando, Florida. Reston: American Institute of Aeronautics and Astronautics; 2010. [Link]
7. Nosratollahi M, Mortazavi M, Adami A, Hosseini M. Multidisciplinary design optimization of a reentry vehicle using genetic algorithm. Aircraft Engineering and Aerospace Technology. 2010;82(3):194-203. [Link] [DOI:10.1108/00022661011075928]
8. Johnson JE, Starkey RP, Lewis MJ. Aerothermodynamic optimization of reentry heat shield shapes for a crew exploration vehicle. Journal of Spacecraft and Rockets. 2007;44(4):849-859. [Link] [DOI:10.2514/1.27219]
9. Johnson JE, Lewis MJ, Starkey RP. Entry heat shield optimization for mars return. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 5-8 January, 2009, Orlando, Florida. Reston: American Institute of Aeronautics and Astronautics; 2009. [Link] [DOI:10.2514/6.2009-518]
10. Tava M, Suzuki Sh. Multidisciplinary design optimization of the shape and trajectory of a reentry vehicle. Transactions of the Japan Society for Aeronautical and Space Sciences. 2002;45(147):10-19. [Link] [DOI:10.2322/tjsass.45.10]
11. Monti R, De Stefano Fumo M, Savino R. Thermal shielding of a reentry vehicle by ultra-high-tempreature ceramic materials. Journal of Thermophysics and Heat Transfer. 2006;20(3):500-506. [Link] [DOI:10.2514/1.17947]
12. Theisinger JE, Braun RD, Clark IG. Aerothermodynamic shape optimization of hypersonic entry aeroshells. 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 13-15 September, 2010, Fort Worth, Texas. Reston: American Institute of Aeronautics and Astronautics; 2010. [Link] [DOI:10.2514/6.2010-9200]
13. Dirkx D, Mooij E. Continuous aerodynamic modelling of entry shapes. AIAA Atmospheric Flight Mechanics Conference, 8-11 August, 2011, Portland, Oregon. Reston: American Institute of Aeronautics and Astronautics; 2011. [Link] [DOI:10.2514/6.2011-6575]
14. Craidon CB. A description of the Langley wireframe geometry standard (LaWGS) format [Internet]. Hampton: NASA Langley Research Center; 1985. Available from: https://ntrs.nasa.gov/search.jsp?R=19850014069 [Link]
15. CRUZ C, Wilhite A. Prediction of high-speed aerodynamic characteristics using the aerodynamic preliminary analysis system (APAS). 7th Applied Aerodynamics Conference, 1 July, 1989, Hampton, Virginia. Reston: American Institute of Aeronautics and Astronautics; 1989. [Link]
16. Kinney D. Aero-thermodynamics for conceptual design. 42nd AIAA Aerospace Sciences Meeting and Exhibit, 5-8 January, Reno, Nevada. Reston: American Institute of Aeronautics and Astronautics; 2004. [Link] [DOI:10.2514/6.2004-31]
17. Maughmer M, Ozoroski L, Straussfogel D, Long L. Validation of engineering methods for predicting hypersonic vehicle control forces and moments. Journal of Guidance Control and Dynamics. 1993;16(4):762-769. [Link] [DOI:10.2514/3.21078]
18. Shaughnessy JD, Pinckney SZ, McMinn JD, Cruz CI, Kelley ML. Hypersonic vehicle simulation model: Winged-cone configuration [Internet]. Hampton: NASA; 1990. Available from: https://ntrs.nasa.gov/search.jsp?R=19910003392 [Link]
19. Gentry AE, Smyth DN, Oliver WR. The mark IV supersonic-hypersonic arbitrary-body program. Volume II-Program Formulation, AFFDL-TR-73-159, USAF Flight Dynamics Laboratory, 1973. [Link]
20. Fay JA, Riddell FR. Theory of stagnation point heat transfer in dissociated air. Journal of the Aeronautical Sciences. 1958;25(2):73-85. [Link] [DOI:10.2514/8.7517]
21. Ashley H. Engineering analysis of flight vehicles. 1st Edition. Mineola: Dover Publications; 1992. [Link]
22. Hankey WL. Re-entry aerodynamics. Washington DC: American Institute of Aeronautics and Astronautics; 1988. [Link] [DOI:10.2514/4.862342]
23. Regan FJ, Anandakrishnan SM. Dynamics of atmospheric re-entry. Washington DC: American Institute of Aeronautics and Astronautics; 1993. [Link] [DOI:10.2514/4.861741]
24. NASA. U.S. Standard Atmosphere [Internet]. Washington DC: NASA; 1976. Available from: https://ntrs.nasa.gov/search.jsp?R=19770009539 [Link]
25. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6(2):182-197. [Link] [DOI:10.1109/4235.996017]
26. Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on Evolutionary Computation. 2002;6(2):182-197. [Link] [DOI:10.1109/4235.996017]
27. Bertin JJ. Hypersonic aerothermodynamics. Reston: American Institute of Aeronautics and Astronautics;1994. [Link]
28. Sellers JJ. Understanding space: An introduction to astronautics. 2nd Edition. New York: McGraw-Hill; 2000. [Link]
29. Tang W, Orlowski M, Longo JMA, Giese P. Aerodynamic optimization of re-entry capsules. Aerospace Science and Technology. 2001;5(1):15-25. [Link] [DOI:10.1016/S1270-9638(00)01085-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.