Volume 20, Issue 1 (January 2020)                   Modares Mechanical Engineering 2020, 20(1): 259-266 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fotohi H, Khezrian I. Experimental Investigation of Talc Microparticles Effect on the Mechanical and Thermal Properties of Silica-Phenolic Composite Multilayers. Modares Mechanical Engineering 2020; 20 (1) :259-266
URL: http://mme.modares.ac.ir/article-15-25209-en.html
1- Composite Department, Malek Ashtar University of Technology, Tehran, Iran , hami.fotohi97@gmail.com
2- Aerospace Department, Shahid Beheshti University, Tehran, Iran
Abstract:   (2903 Views)
Today, composite materials have attracted much attention in many industries, such as aerospace, automotive and marine industries, due to the strength to weight ratio, as well as the ratio of stiffness to high weight. Thermoset resins are among the most widely used resins in making composites based polymer. In the meantime, phenolic resins are the oldest industrial and thermosetting resins, which have important applications in various industries. The distinctive feature of this resin has resulted to its application as industrial insulators, thermal shields composites and ablative composites, and abrasive parts such as brake linings and clutch plates, and many other components. One of the applications of phenolic resins, especially resole with a relatively high thermal resistance, is the use of thermal insulation composites in thermal shields and hot air nozzles. The thermal insulation composites are often phenolic resins and their reinforcement is mainly asbestos fibers with high thermal resistance. Today, due to the carcinogenicity of asbestos fibers and the problems caused by its use, these fibers are removed from the list of reinforcing insulators, and silica fibers, a new product with an asbestos thermal stability and no environmental problem, have replaced instead of them. In this study, talc mineral micro-particles with a mean particle size of 8 μm as reinforcing the mechanical properties and thermal stability, were added to 25, 15 and 35 phr in phenolic resins in several layers of silica-phenolic composites.
Full-Text [PDF 1146 kb]   (2159 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2018/09/17 | Accepted: 2019/05/7 | Published: 2020/01/20

References
1. Sridharan S. Delamination behaviour of composites. 1st Edition. Cambridge: Woodhead Publishing Limited; 2008. [Link] [DOI:10.1533/9781845694821]
2. Kassapoglou Ch. Modeling the effect of damage in composite structures: Simplified approaches. Hoboken: John Wiley & Sons; 2015. [Link] [DOI:10.1002/9781119013228]
3. Knop A, Pilato LA. Phenolic resins: Chemistry, applications and performance: Future directions. Berlin: Springer; 1985. [Link] [DOI:10.1007/978-3-662-02429-4]
4. Rahimi A. Introducing polymers and application. 1st Edition. Tehran: Iran Polymer and Petrochemical Institute; 2006. [Persian] [Link]
5. Zohurian Mehr MJ. Applied polymer chemistry. Tehran: Sharif University of Technology; 1997. [Persian] [Link]
6. Beheshty M, Rezadoust AM. Plastic reinforced (composites). Tehran: Iran Polymer and Petrochemical Institute; 2012. [Persian] [Link]
7. Akhlaghi R, Bahramian AR, Razaghi Kashani M. The effect of graphite nanoparticles on thermal stability and ablation of phenolic/carbon fiber/graphite nanocomposites. Iranian Journal of Polymer Science and Technology. 2014;27(3):241-249. [Persian] [Link]
8. Pilato L, editor. Phenolic resins: A century of progress. Berlin: Springer; 2010. [Link] [DOI:10.1007/978-3-642-04714-5]
9. Karami Ghahi M, Beheshty MH, Esfandeh M, Rezadoust AM. Study of room temperature curing of phenolic resin and its silica reinforced composites. Iranian Journal of Polymer Science and Technology. 2008;21(2):149-155. [Persian] [Link]
10. Minges ML. Thermal physical characteristics of high-performance ablative composites. Journal of Macromolecular Science: Part A- Chemistry. 1969;3(4):613-639. [Link] [DOI:10.1080/10601326908053832]
11. Gültek A, Seçkin T, Önal Y, İçduygu MG. Poly (methacrylic) acid andgamma-methacryloxypropyltrimethoxy silane/clay nanocomposites prepared by in-situ polymerization. Turkish Journal of Chemistry. 2002;26(6):925-938. [Link]
12. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports. 2000;28(1-2):1-63. [Link] [DOI:10.1016/S0927-796X(00)00012-7]
13. Zhu J, Start P, Mauritz KA, Wilkie CA. Thermal stability and flame retardancy of poly (methyl methacrylate)-clay nanocomposites. Polymer Degradation and Stability. 2002;77(2):253-258. [Link] [DOI:10.1016/S0141-3910(02)00056-3]
14. Chang JP, Lin YS, Chu K. Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2001;19(5):1782-1787. [Link] [DOI:10.1116/1.1396639]
15. Kucuk A, Lima RS, Berndt CC. Influence of plasma spray parameters on formation and morphology of ZrO2-8 wt% Y2O3 deposits. Journal of the American Ceramic Society. 2001;84(4):693-700. [Link] [DOI:10.1111/j.1151-2916.2001.tb00728.x]
16. Matsumoto A, Ohtsuka K, Kimura H, Adachi SI, Takenaka M. Moldability and properties of phenolic/artificial zeolite composites. Journal of Applied Polymer Science. 2007;106(6):3666-3673. [Link] [DOI:10.1002/app.27041]
17. Bahramian AR, Kokabi M, Famili MH, Beheshty MH. High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. Journal of Hazardous Materials. 2008;150(1):136-145. [Link] [DOI:10.1016/j.jhazmat.2007.04.104]
18. Bahramian AR, Kokabi M. Ablation mechanism of polymer layered silicate nanocomposite heat shield. Journal of Hazardous Materials. 2009;166(1):445-454. [Link] [DOI:10.1016/j.jhazmat.2008.11.061]
19. Bahramian AR, Kokabi M, Famili MH, Beheshty MH. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modeling and experimental. Polymer. 2006;47(10):3661-3673. [Link] [DOI:10.1016/j.polymer.2006.03.049]
20. Mirzapour A, Pourhasan B, Eslami Z. Effect of nanosilica on bending strength and thermal stability of glass fiber/phenolic nanocomposite. Iranian Journal of Polymer Science and Technology. 2016;29(4):377-386. [Persian] [Link]
21. ASTM D3531/D3531M-16. Standard test method for resin flow of carbon fiber-epoxy prepreg. West Conshohocken: ASTM International; 2016. [Link]
22. ASTM D3418-99. Standard test method for transition temperatures of polymers by differential scanning calorimetry. West Conshohocken: ASTM International; 1999. [Link]
23. ASTMD790-17. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken: ASTM International; 2017. [Link]
24. ASTM D3039M. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM International; 2017. [Link]
25. Hitachi. DSC measurements of thermosetting resins. Tokyo: Hitachi; 1981. [Link]
26. Pilato L, editor. Phenolic resins: A century of progress. 2nd Edition. Berlin: Springer Science & Business Media; 2010. [Link] [DOI:10.1007/978-3-642-04714-5]
27. Srebrenkoska V, Bogoeva-Gaceva G, Dimeski D. Composite material based on an ablative phenolic resin and carbon fibers. Journal of the Serbian Chemical Society. 2009;74(4):441-453. [Link] [DOI:10.2298/JSC0904441S]
28. Taherian R, Nozad Golikand A, Hadianfard MJ. Preparation and properties of a phenolic/graphite nanocomposite bipolar plate for proton exchange membrane fuel cell. ECS Journal of Solid State Science and Technology. 2012;1(6):M39-M46. [Link] [DOI:10.1149/2.005206jss]
29. Li M, Liu D. Mechanical and electrical properties of graphite/carbon fiber/phenolic resin composite. In: Fan W, editor. Advanced materials research. Unknown city: Trans Tech Publications. 2012. pp. 1452-1455. [Link] [DOI:10.4028/www.scientific.net/AMR.418-420.1452]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.