Volume 19, Issue 12 (December 2019)                   Modares Mechanical Engineering 2019, 19(12): 3051-3062 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moeinian M, Taghavipour A. Development of a Novel Sizing Software for Plug-In Hybrid Electric Vehicles. Modares Mechanical Engineering 2019; 19 (12) :3051-3062
URL: http://mme.modares.ac.ir/article-15-26590-en.html
1- Mechanical Engineering Department, Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran , taghavi@kntu.ac.ir
Abstract:   (4397 Views)

The plug-in hybrid electric powertrain is a new technology and a suitable option to reduce the volume of pollutants in the city. The batteries in these systems can be plugged into an external source in addition to recharging by the combustion engine and regenerative braking. These vehicles have larger full electric range because of their relatively large batteries. As a result, the fuel consumption of these vehicles is low. The aim of this research is the development of a smart sizing and simulation software for plug-in hybrid electric vehicles. The size of the combustion engine, electric motor and battery are calculated in the software according to the input based on the performance of components. Then fuel consumption and emissions of pollutants are estimated in a standard drive cycle using a predictive controller. To verify the result from the software, a produced plug-in hybrid electric vehicle has been used. The software outputs correspond to the determined values for the vehicle. The proposed software is a useful tool for the early phase of the plug-in hybrid electric vehicle development stage.
 

Full-Text [PDF 1310 kb]   (1857 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/10/29 | Accepted: 2019/05/26 | Published: 2019/12/21

References
1. Anderson CD, Anderson J. Electric and hybrid cars: a history. 2nd Edition. jefferson north Carolina: McFarland; 2010. [Link]
2. Markel T, Brooker A, Hendricks T, Johnson V, Kelly K, Kramer B, et al. ADVISOR: a systems analysis tool for advanced vehicle modeling. Journal of power sources. 2002;110(2):255-266. [Link] [DOI:10.1016/S0378-7753(02)00189-1]
3. Golbuff S. Design optimization of a plug-in hybrid electric vehicle. SAE Transactions. 2007;116:526-531. [Link] [DOI:10.4271/2007-01-1545]
4. Taghavipour A, Azad NL, McPhee J. Real-time predictive control strategy for a plug-in hybrid electric powertrain. Mechatronics. 2015;29:13-27. [Link] [DOI:10.1016/j.mechatronics.2015.04.020]
5. Mozaffari A, Chehresaz M, Azad NL. Component sizing of a plug-in hybrid electric vehicle powertrain, Part A: Coupling bio-inspired techniques to meshless variable-fidelity surrogate models. International Journal of Bio-Inspired Computation. 2013;5(6):350-83. [Link] [DOI:10.1504/IJBIC.2013.058914]
6. Ming L, Ying Y, Liang L, Yao L, Zhou W. Energy management strategy of a plug-in parallel hybrid electric vehicle using fuzzy control. Energy Procedia. 2017;105:2660-2665. [Link] [DOI:10.1016/j.egypro.2017.03.771]
7. Roohi M, Taghavipour A. Design and development of real-time optimal energy management system for hybrid electric vehicles. World Academy of Science, Engineering and Technology. International Journal of Mechanical and Mechatronics Engineering. 2017;11(3):540-545. [Link]
8. Fiori C, Ahn K, Rakha HA. Microscopic series plug-in hybrid electric vehicle energy consumption model: Model development and validation. Transportation Research Part D: Transport and Environment. 2018;63:175-185. [Link] [DOI:10.1016/j.trd.2018.04.022]
9. Leikarnes IR. Modelling and simulating a hybrid electric vehicle [Dissertation]. Tromsø, Norway: The Arctic University of Norway; 2017. [Link]
10. Lowe G. Driving the internet of things. IEEE Design & Test. 2014;31(2):22-27. [Link] [DOI:10.1109/MDAT.2014.2316207]
11. Ehsani M, Gao Y, Longo S, Ebrahimi K. Modern electric, hybrid electric, and fuel cell vehicles. 3rd Edition. Boca Raton: CRC Press; 2018. [Link] [DOI:10.1201/9781420054002]
12. Marano V, Onori S, Guezennec Y, Rizzoni G, Madella N. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles. In: 2009 IEEE Vehicle Power and Propulsion Conference; 2009 Sep 7-10; Dearborn, MI, USA. IEEE; 2009. p. 536-543. [Link] [DOI:10.1109/VPPC.2009.5289803]
13. Hendricks E, Chevalier A, Jensen M, Sorenson SC, Trumpy D, Asik J. Modelling of the intake manifold filling dynamics. SAE Transactions. 1996;105:122-46. [Link] [DOI:10.4271/960037]
14. Bowling B, Grippo A. Creating an initial AFR table for tuning [Internet]. Unknown city: MicroSquirt3; 2011 [Unknown cited]. Available from: http://www.useasydocs.com/theory/afrtable.htm. [Link]
15. Jurgen RK. Automotive electronics handbook. New York: McGraw Hill Professional; 1999. [Link]
16. Shams-Zahraei M, Kouzani AZ, Kutter S, Bäker B. Integrated thermal and energy management of plug-in hybrid electric vehicles. Journal of Power Sources. 2012;216:237-248. [Link] [DOI:10.1016/j.jpowsour.2012.05.055]
17. Committee S. Vertical Alignment, Chapter 12. In: Queensland. Main Roads Department. Road planning and design manual. 1st Edition. Brisbane: Queensland Government; 2002. [Link]
18. DJB. Driveway approach & departure angles. Public Works & Utilities Engineering & Design Standards. Florida: Altamonte Springs; 2017. [Link]
19. Friedman PD, Grossweiler P. An analysis of U.S. federal mileage ratings for plug-in hybrid electric vehicles. Energy Policy. 2014;74:697-702. [Link] [DOI:10.1016/j.enpol.2014.07.017]
20. Bayarsuren B, Odbileg N, Ganbat D. TOYOTA engine sensor fault affects to the engine exhaust CO and CH emissions. 2008 Third International Forum on Strategic Technologies, 23-29 June 2008, Novosibirsk-Tomsk, Russia. Piscataway: IEEE; 2008. [Link] [DOI:10.1109/IFOST.2008.4603016]
21. Mi C, Masrur MA. Hybrid electric vehicles: principles and applications with practical perspectives. Hoboken: John Wiley & Sons; 2017. [Link] [DOI:10.1002/9781118970553]
22. Manualslib. Fiat Asian AF40-6 manual [Internet]. Unknown city: ManualsLib; Unknown Year [Unknown cited]. Available from: https://www.manualslib.com/manual/1361428/Fiat-Aisin-Af40-6.html. [Link]
23. Taghavipour A, Azad NL, McPhee J. An optimal power management strategy for power split plug-in hybrid electric vehicles. International Journal of Vehicle Design. 2012;60(3-4):286-304. [Link] [DOI:10.1504/IJVD.2012.050085]
24. Bai ZF, Li SX, Cao BG. H∞ control applied electric torque control for regenerative braking of an electric vehicle. Joural of Applied Sciences. 2005;5(6):1103-1107. [Link] [DOI:10.3923/jas.2005.1103.1107]
25. Varocky BJ, Nijmeijer H, Jansen S, Besselink IJ, Mansvelder R. Benchmarking of regenerative braking for a fully electric car. TNO Automotive, Helmond & Technische Universiteit Eindhoven (TU/e); 2011 Jun. Report No.: D&C 2011.002. [Link]
26. Lu D, Ouyang M, Gu J, Li J. Instantaneous optimal regenerative braking control for a permanent-magnet synchronous motor in a four-wheel-drive electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2014; 228(8):894-908. [Link] [DOI:10.1177/0954407014521173]
27. Schwarzer V, Ghorbani R. Drive cycle generation for design optimization of electric vehicles. IEEE Transactions on Vehicular Technology. 2012;62(1):89-97. [Link] [DOI:10.1109/TVT.2012.2219889]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.