Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2615-2625 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalilpour Seyedi S, Khorrambakht R, Bourbour A, Taghirad H. Joint-Space Position Control of a Deployable Cable Driven Robot in Joint Space Using Force Sensors and Actuator Encoders. Modares Mechanical Engineering 2019; 19 (11) :2615-2625
URL: http://mme.modares.ac.ir/article-15-26863-en.html
1- Faculty of Electrical Engineering, K. N. Toosi University of Technology
2- Faculty of Electrical Engineering, K. N. Toosi University of Technology , taghirad@kntu.ac.ir
Abstract:   (6098 Views)
Despite the intense development of cable-driven robot in recent years, they have not yet been vastly utilized in their potential applications because of difficulties in their performing accurate installation and calibration. This paper aims to present a suitable control method, relieving the limitation of accurate calibration and installation requirement in the suspended cable-driven parallel robot. In this paper, kinematics and dynamics uncertainties are investigated and based on their bounds, a robust controller is proposed. The main innovation of this article is providing a new control method to cost reduction by eliminating accurate measurement tools such as a camera in position control of a deployable cable-driven robot. Using this approach, reducing costs in building a robot and increasing the speed of installation and calibration is achieved. Another problem investigated in this paper is the problem of joint space controllers applied to redundant cable-driven parallel robots, namely the loosened redundant cable. To solve this problem, the embedded force sensor and a new sliding surface for the controller is proposed. In fact, in this paper, the conventional joint-space controllers are modified to become applicable to the control of cable-driven robots. Finally, by conducting some experiments using ARAS suspended cable-driven parallel robot, the proposed algorithms are verified and it is shown that there are feasible solutions for stable robot maneuvers.
Full-Text [PDF 871 kb]   (1711 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2018/11/5 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. Taghirad H, Khalilpour A, Aliyari M, Tale Masouleh M. Appling evolutionary algorithms in multi objective optimization of planar cable-driven parallel robots. Modares Mechanical Engineering. 2014;14(5):44-54. [Persian] [Link]
2. Dominjon L, Perret J, Lécuyer A. Novel devices and interaction techniques for human-scale haptics. The Visual Computer. 2007;23(4):257-266. [Link] [DOI:10.1007/s00371-007-0100-4]
3. Tadokoro S, Verhoeven R, Hiller M, Takamori T. A portable parallel manipulator for search and rescue at large-scale urban earthquakes And an Identification algorithm for the installation in unstructured environments. Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289), 17-21 Oct. 1999, Kyongju, South Korea, South Korea. Piscataway: IEEE; 2002. P. 1222-1227. [Link]
4. Rosati G, Gallina P, Masiero S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(4):560-569. [Link] [DOI:10.1109/TNSRE.2007.908560]
5. Morizono T, Kurahashi K, Kawamura S. Realization of a virtual sports training system with parallel wire mechanism. Proceedings of International Conference on Robotics and Automation, 25-25 April 1997, Albuquerque, NM, USA, USA. Piscataway: IEEE; 2002. [Link]
6. Merlet JP. Marionet, a family of modular wire-driven parallel robots. In: Lenarcic J, Stanisic M, editors. Advances in robot kinematics: Motion in man and machine. Dordrecht: Springer; 2010. pp. 53-61. [Link] [DOI:10.1007/978-90-481-9262-5_6]
7. Jordan BL, Batalin MA, Kaiser WJ. NIMS RD: A rapidly deployable cable based robot. Proceedings 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, Roma, Italy. Piscataway: IEEE; 2007. [Link] [DOI:10.1109/ROBOT.2007.363778]
8. Bosscher P, Williams RL, Tummino M. A concept for rapidly-deployable cable robot search and rescue systems. ASME Proceedings, 29th Mechanisms and Robotics Conference. 2005;7:589-598. [Link] [DOI:10.1115/DETC2005-84324]
9. Borgstrom P, Jordan B, Borgstrom BJ, Stealey MJ, Sukhatme GS, Batalin MA, et al. NIMS-PL: A cable-driven robot with self-calibration capabilities. IEEE Transactions on Robotics. 2009;25(5):1005-1015. [Link] [DOI:10.1109/TRO.2009.2024792]
10. Borgstrom PH, Stealey MJ, Batalin MA, Kaiser WJ. NIMS3D: A novel rapidly deployable robot for 3-dimensional applications. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006, Beijing, China. Piscataway: IEEE; 2007. [Link] [DOI:10.1109/IROS.2006.281718]
11. Zi B, Qian S, Ding H, Kecskeméthy A. Design and analysis of cooperative cable parallel manipulators for multiple mobile cranes. International Journal of Advanced Robotic Systems. 2012;9. [Link] [DOI:10.5772/53670]
12. Qian S, Zi B, Zhang D, Zhang L. Kinematics and error analysis of cooperative cable parallel manipulators for multiple mobile cranes. International Journal of Mechanics and Materials in Design. 2014;10(4):395-409. [Link] [DOI:10.1007/s10999-014-9250-5]
13. Zi B, Cao J, Zhu Z, Mitrouchev P. Design, dynamics, and workspace of a hybrid-driven-based cable parallel manipulator. Mathematical Problems in Engineering. 2013;2013:914653. [Link] [DOI:10.1155/2013/914653]
14. Khalilpour SA, Bourbour A, Khorrambakht R, Kariminasab S, Taghirad HD. Forward kinematics resolution of a deployable cable robot. 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), 25-27 Oct. 2017, Tehran, Iran. Piscataway: IEEE; 2018. [Link] [DOI:10.1109/ICRoM.2017.8466157]
15. Borgstrom PH, Borgstrom NP, Stealey MJ, Jordan B, Sukhatme GS, Batalin M, et al. Design and implementation of NIMS3D, a 3-D cabled robot for actuated sensing applications. IEEE Transactions on Robotics. 2009;25(2):325-329. [Link] [DOI:10.1109/TRO.2009.2012339]
16. Khalilpour SA, Khorrambakht R, Harandi MJ, Taghirad HD, Cardou P. Robust dynamic sliding mode control of a deployable cable driven robot. Electrical Engineering (ICEE), Iranian Conference on, 8-10 May 2018, Mashhad, Iran. Piscataway: IEEE; 2018. [Link] [DOI:10.1109/ICEE.2018.8472612]
17. Oh SR, Agrawal SK. A control lyapunov approach for feedback control of cable-Suspended robots. Proceedings 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, Roma, Italy. Piscataway: IEEE; 2007. [Link] [DOI:10.1109/ROBOT.2007.364179]
18. Fang S, Franitza D, Torlo M, Bekes F, Hiller M. Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Transactions on Mechatronics. 2004;9(3):561-568. [Link] [DOI:10.1109/TMECH.2004.835336]
19. El-Ghazaly G, Gouttefarde M, Creuze V. Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator: CoGiRo. In: Pott A, Bruckmann T, editors. Cable-driven parallel robots. mechanisms and machine science. Cham: Springer; 2015. [Link] [DOI:10.1007/978-3-319-09489-2_13]
20. Borgstrom PH, Jordan BL, Sukhatme GS, Batalin MA, Kaiser WJ. Rapid computation of optimally safe tension distributions for parallel cable-driven robots. IEEE Transactions on Robotics. 2009;25(6):1271-1281. [Link] [DOI:10.1109/TRO.2009.2032957]
21. Bruckmann T, Pott A, Hiller M. Calculating force distributions for redundantly actuated tendon-based stewart platforms. In: Lennarčič J, Roth B, editors. Advances in robot kinematics. Dordrecht: Springer; 2006. [Link]
22. Cheah CC, Kawamura S, Arimoto S. Feedback control for robotic manipulator with an uncertain Jacobian matrix. Journal of Robotic Systems Banner. 1999;16(2):119-134. https://doi.org/10.1002/(SICI)1097-4563(199902)16:2<119::AID-ROB5>3.0.CO;2-J [Link] [DOI:10.1002/(SICI)1097-4563(199902)16:23.0.CO;2-J]
23. Cheah CC, Kawamura S, Arimoto S, Lee K. H/sub /spl infin// tuning for task-space feedback control of robot with uncertain Jacobian matrix. IEEE Transactions on Automatic Control. 2001;46(8):1313-1318. [Link] [DOI:10.1109/9.940941]
24. Cheah CC, Hirano M, Kawamura S, Arimoto S. Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Transactions on Robotics and Automation. 2003;19(4):692-702. [Link] [DOI:10.1109/TRA.2003.814517]
25. Khosravi MA, Taghirad HD. Robust PID control of fully-constrained cable driven parallel robots. Mechatronics. 2014;24(2):87-97. [Link] [DOI:10.1016/j.mechatronics.2013.12.001]
26. Babaghasabha R, Khosravi MA, Taghirad HD. Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics. 2015;25:27-36. [Link] [DOI:10.1016/j.mechatronics.2014.11.005]
27. Taghirad HD. Parallel robots: Mechanics and control. Boca Raton: CRC Press; 2013. [Link] [DOI:10.1201/b16096]
28. Korayem MH, Tajik A, Najafabadi AI, Tourajizadeh H. Calculation of the end-effecter position of the cable robot using cable tension and encoders outputs. 3rd International and 12th National Conference on Manufacturing Engineering (ICME), 2012, Tehran, Iran. Tehran: University of Tehran; 2012. [Persian] [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.