Volume 19, Issue 7 (July 2019)                   Modares Mechanical Engineering 2019, 19(7): 1645-1653 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Safavi M, Nourazar S. Experimental, Numerical, and Analytical Study of a Droplet Impact on Parallel Fibers. Modares Mechanical Engineering 2019; 19 (7) :1645-1653
URL: http://mme.modares.ac.ir/article-15-27652-en.html
1- Faculty of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Faculty of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran , icp@aut.ac.ir
Abstract:   (4560 Views)

The statics of droplet hanging from the parallel fibers and the dynamics of droplet impact on the parallel fibers are investigated using high-speed imaging and volume of fluid numerical simulation. Experimental results show for the parallel fibers, the maximum volume of the droplet, which is able to hang statically from the fibers is measured to vary between 1.85 to 1.9 times of the one measured for a single fiber. The dynamics of droplet impact have been studied by varying the radius of the impacting droplet, the fibers radius, and the distance between the fibers. The threshold velocity of droplets by fibers has been obtained both experimentally and numerically with the fluid volume method. The results show that by increasing the impacting droplet radius and decreasing the fibers radius, the threshold velocity of droplet capture decreases. The maximum threshold velocity of droplet capture with parallel fibers varies in the range of 1.5 to 1.8 times of the threshold velocity of capture with a single fiber. The maximum threshold capture velocity of droplets occurs where the distance between fibers is in the range of 0.35 to 0.5 times of impacting droplet diameter. The threshold capture velocity on parallel fibers is also obtained analytically, using the energy balance method. The results of the analytical solution are in a fair agreement with experimental data and numerical simulation results.


Full-Text [PDF 1455 kb]   (1859 Downloads)    
Article Type: Original Research | Subject: Two & Multi Phase Flow
Received: 2018/11/29 | Accepted: 2019/01/7 | Published: 2019/07/1

References
1. Liew TP, Conder JR. Fine mist filtration by wet filters-I. Liquid saturation and flow resistance of fibrous filters. Journal of Aerosol Science. 1985;16(6):497-509. [Link] [DOI:10.1016/0021-8502(85)90002-3]
2. Bourrous S, Bouilloux L, Ouf FX, Lemaitre P, Nerisson P, Thomas D, et al. Measurement and modeling of pressure drop of HEPA filters clogged with ultrafine particles. Powder Technology. 2016;289:109-117. [Link] [DOI:10.1016/j.powtec.2015.11.020]
3. Agranovski IE, Braddock RD. Filtration of liquid aerosols on nonwettable fibrous filters. AIChE Journal. 1998;44(12):27754-2783. [Link] [DOI:10.1002/aic.690441219]
4. Liu Z, Ji Z, Zhang J, Li L. Influence of processing parameters on gas-liquid filtration performance of fibrous filter cartridge. Procedia Engineering. 2015;102:911-920. [Link] [DOI:10.1016/j.proeng.2015.01.212]
5. Mead-Hunter R, King AJC, Mullins BJ. 3-Fibrous filtration of liquid aerosols. Fibrous Filter Media. 2017 Jun: 51-93. [Link] [DOI:10.1016/B978-0-08-100573-6.00010-1]
6. Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL. Nanofiber coating of surfaces for intensification of drop or spray impact cooling. International Journal of Heat and Mass Transfer. 2009;52(25-26):5814-5826. [Link] [DOI:10.1016/j.ijheatmasstransfer.2009.07.021]
7. Han Z, Chang VW, Zhang L, Tse MS, Tan OK, Hildemann LM. Preparation of TiO2-coated polyester fiber filter by spray-coating and its photocatalytic degradation of gaseous formaldehyde. Aerosol and Air Quality Research. 2012;12:1327-1335. [Link] [DOI:10.4209/aaqr.2012.05.0114]
8. Han D, Steckl AJ. Superhydrophobic and oleophobic fibers by coaxial electrospinning. LANGMUIR. 2009;25(16):9454-9462. [Link] [DOI:10.1021/la900660v]
9. Gac JM, Jackiewicz A, Werner Ł, Jakubiak S. Consecutive filtration of solid particles and droplets in fibrous filters. Separation and Purification Technology. 2016;170:234-240. [Link] [DOI:10.1016/j.seppur.2016.06.057]
10. Kolakaluri R, Murphy E, Subramaniam S, Brown RC, Fox RO. Filtration model for polydisperse aerosols in gas‐solid flow using granule‐resolved direct numerical simulation. AIChE Journal. 2015;61(11):3594-3606. [Link] [DOI:10.1002/aic.14901]
11. Sim KM, Park HS, Bae GN, Jung JH. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop. Science of The Total Environment. 2015;533:266-274. [Link] [DOI:10.1016/j.scitotenv.2015.07.003]
12. Carroll BJ. The equilibrium of liquid drops on smooth and rough circular cylinders. Journal of Colloid and Interface Science. 1984;97(1):195-200. [Link] [DOI:10.1016/0021-9797(84)90286-8]
13. McHale G, Newton MI. Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002;206(1-3):79-86. [Link] [DOI:10.1016/S0927-7757(02)00081-X]
14. Wu XF, Dzenis YA. Droplet on a fiber: Geometrical shape and contact angle. Acta Mechanica. 2006;185(3-4):215-225. [Link] [DOI:10.1007/s00707-006-0349-0]
15. Bedarkar A, Wu XF, Vaynberg A. Wetting of liquid droplets on two parallel filaments. Applied Surface Science. 2010;256(23):7260-7264. [Link] [DOI:10.1016/j.apsusc.2010.05.061]
16. Mei M, Fan J, Shou D. The gravitational effect on the geometric profiles of droplets on horizontal fibers. Soft Matter. 2013;9(43):10324-10334. [Link] [DOI:10.1039/c3sm51520f]
17. Jamali M, Moghadam A, Vahedi Tafreshi H, Pourdeyhimi B. Droplet adhesion to hydrophobic fibrous surfaces. Applied Surface Science. 2018;456:626-636. [Link] [DOI:10.1016/j.apsusc.2018.06.136]
18. Hung LS, Yao SC. Experimental investigation of the impaction of water droplets on cylindrical objects. International Journal of Multiphase flow. 1999;25(8):1545-1559. [Link] [DOI:10.1016/S0301-9322(98)00085-8]
19. Hung LS, Yao SC. Dripping phenomena of water droplets impacted on horizontal wire screens. International Journal of Multiphase Flow. 2002;28(1):93-104. [Link] [DOI:10.1016/S0301-9322(01)00061-1]
20. Pasandideh-Fard M, Bussmann M, Chandra S, Mostaghimi J. Simulating droplet impact on a substrate of arbitrary shape. Atomization and Sprays. 2001;11(4):397-414. [Link] [DOI:10.1615/AtomizSpr.v11.i4.60]
21. Liang G, Guo Y, Yang Y, Guo S, Shen S. Special phenomena from a single liquid drop impact on wetted cylindrical surfaces. Experimental Thermal and Fluid Science. 2013;51:18-27. [Link] [DOI:10.1016/j.expthermflusci.2013.06.012]
22. Liang G, Guo Y, Yang Y, Shen S. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces. International Communications in Heat and Mass Transfer. 2014;54:67-74. [Link] [DOI:10.1016/j.icheatmasstransfer.2014.03.010]
23. Lorenceau É, Clanet C, Quéré D. Capturing drops with a thin fiber. Journal of Colloid and Interface Science. 2004;279(1):192-197. [Link] [DOI:10.1016/j.jcis.2004.06.054]
24. Lorenceau E, Clanet C, Quéré D, Vignes-Adler M. Off-centre impact on a horizontal fibre. The European Physical Journal Special Topics. 2009;166(1):3-6. [Link] [DOI:10.1140/epjst/e2009-00868-0]
25. Sher E, Haim LF, Sher I. Off-centered impact of water droplets on a thin horizontal wire. International Journal of Multiphase Flow. 2013;54:55-60. [Link] [DOI:10.1016/j.ijmultiphaseflow.2013.03.002]
26. Piroird K, Clanet C, Lorenceau É, Quéré D. Drops impacting inclined fibers. Journal of Colloid and Interface Science. 2009;334:70-74. [Link] [DOI:10.1016/j.jcis.2009.03.004]
27. Dressaire E, Sauret A, Boulogne F, Stone HA. Drop impact on a flexible fiber. Soft Matter. 2016;12(1):200-208. [Link] [DOI:10.1039/C5SM02246K]
28. Kim SG, Kim W. Drop impact on a fiber. Physics of Fluids. 2016;28(4):042001. [Link] [DOI:10.1063/1.4945103]
29. Safavi M, Nourazar SS. Experimental, analytical, and numerical study of droplet impact on a horizontal fiber. International Journal of Multiphase Flow. 2019;113:316-324. [Link] [DOI:10.1016/j.ijmultiphaseflow.2018.10.018]
30. Briscoe BJ, Galvin KP, Luckham PF, Saeid AM. Droplet coalescence on fibres. Colloids and Surfaces. 1991;56:301-312. [Link] [DOI:10.1016/0166-6622(91)80129-C]
31. Mullins BJ, Agranovski IE, Braddock RD, Ho CM. Effect of fiber orientation on fiber wetting processes. Journal of Colloid and Interface Science. 2004;269(2):449-458. [Link] [DOI:10.1016/S0021-9797(03)00729-X]
32. Yarin AL, Chase GG, Liu W, Doiphode SV, Reneker DH. Liquid drop growth on a fiber. AIChE Journal. 2006;52(1):217-227. [Link] [DOI:10.1002/aic.10661]
33. Yuan Y, Lee TR. Contact angle and wetting properties. Surface Science Techniques. 2013;51:3-34. [Link] [DOI:10.1007/978-3-642-34243-1_1]
34. Ansari MR, Salimi E, Habibpour B, Adibi P. Numerical simulation and investigation of bubble velocity and deformation in inclined channel with two consecutive slopes using VOF-PLIC method. Modares Mechanical Engineering. 2015;14(11):29-36. [Link]
35. Hoffman RL. A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid-gas systems. Journal of Colloid and Interface Science. 1983;94(2):470-486. [Link] [DOI:10.1016/0021-9797(83)90287-4]
36. Šikalo Š, Wilhelm HD, Roisman IV, Jakirlić S, Tropea C. Dynamic contact angle of spreading droplets: Experiments and simulations. Physics of Fluids. 2005;17(6):062103. [Link] [DOI:10.1063/1.1928828]
37. Tanner LH. The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D: Applied Physics. 1979;12(9):1473. [Link] [DOI:10.1088/0022-3727/12/9/009]
38. Cox RG. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. Journal of Fluid Mechanics. 1986;168:169-194. [Link] [DOI:10.1017/S0022112086000332]
39. Berg J, editor. Wettability. Boca Raton: CRC Press; 1993 [Link]
40. Roenby J, Bredmose H, Jasak H. Isoadvector: Free, fast and accurate vof on arbitrary meshes. The 4th OpenFOAM User Conference 2016, Cologne - Germany. Paris: ESI Group; 2016. [Link]
41. Roenby J, Eltard-Larsen B, Bredmose H, Jasak H. A new volume-of-fluid method in openfoam. VII International Conference on Computational Methods in Marine Engineering. Nantes: International Center for Numerical Methods in Engineering; 2017. [Link]
42. Padday JF, Pitt AR. The stability of axisymmetric menisci. Philosophical Transactions of the Royal Society of London, Series A. 1973;275(1253):489-528. [Link] [DOI:10.1098/rsta.1973.0113]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.