Simultaneous Localization and Mapping Using Laser Data and Unsecured FastSLAM with Scan Matching

Marzieh Zamani Alavijeh, Shahram Hadian Jazi*

Department of Mechanical Engineering, University of Isfahan, Isfahan, Iran.
* P.O.B. 8174673441, Isfahan, Iran, s.hadian@eng.ui.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 08 February 2016
Accepted 19 May 2016
Available Online 22 June 2016

Keywords:
Simultaneous localization and mapping
Unsecured FastSLAM algorithm
Laser
Scan Matching

ABSTRACT

Simultaneous localization and mapping (SLAM) is a fundamental problem in autonomous robotics. Many algorithms have been exploited to solve this problem, among these algorithms, FastSLAM is one of the widely used and Unsecured FastSLAM is one of the newest. Although in several scientific researches it is stated that Unsecured FastSLAM outperforms FastSLAM, there are still unexamined potentials regarding Unsecured FastSLAM. Therefore, this paper seeks to improve the overall performance of Unsecured FastSLAM. Map accuracy and quality directly depend on the accuracy of localization and observations. In SLAM algorithms, robot pose is predicted using motion model, and then corrected using the difference between map features and recently observed features. Accuracy of pose estimation may improve by comparing two sequential observations and modifying robot pose to result in better map reconstruction. This method is called scan matching and has been successfully combined with FastSLAM algorithm and other some SLAM algorithms not including Unsecured FastSLAM. Therefore, this paper seeks to investigate the performance of Unsecured FastSLAM combined with scan matching. Simulation results show that combining Unsecured FastSLAM with scan match significantly improves accuracy of localization and mapping.

Please cite this article using:
FastSLAM 2.0

FastSLAM (FS)

Iterative closest point (ICP)

Scan Matching
به‌صورت زیر تعبین می‌شود:

\[
A = \{ a_i \} = \{ a_{init} + k \cdot \frac{\pi}{180} \} : k = -15, -14, \ldots, 14, 15
\]

در این الگوریتم اطلاعات دو پویش یکتا متونی که در دستگاه مختصات کارتزینی محیط یافته باید معادلات به صورت طبقه‌بندی نشان دهد. اگر با بهره‌برداری از مناطق مستقل دو پویش (براساس مختصات (y, ϖ)) کمک کننده، سپس هر مجموعه منطقه از دو پویش خود را بیشتر شود. این ما در طراحی مدل‌های جدید برای کاهش کاربران مورد نیاز. جوابگویی بر اساس این انتقال نشان می‌دهد.

\[
R_{\alpha_i} = \left[\begin{array}{cc} \cos \alpha_i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right] \\
Z_{new} = R_{\alpha_i}Z_{new}
\]

\[
T = \left[\begin{array}{c} x_{ref} \\ y_{ref} \\ z_{ref} \end{array} \right] \\
X_{new} = \left[\begin{array}{c} x_{new} \\ y_{new} \\ z_{new} \end{array} \right]
\]

منابع و انتقال اولیه

\[
\text{می‌شود:}
\]

\[
\text{که در اینجا به‌عنوان یک کاندید که می‌تواند در دستگاه مختصات کارتزینی محیط یافته باید معادلات به‌صورت طبقه‌بندی نشان دهد.}
\]

\[
\text{به‌طور خیالی در شرایط مخصوص باشند و به‌صورت حاضری در مختصات قطعی گردید.}
\]

\[
\text{می‌شود:}
\]

\[
\text{به‌طور خیالی در شرایط مخصوص باشند و به‌صورت حاضری در مختصات قطعی گردید.}
\]
6. معامله و ذخیره خطا انتقال برای نقاط مناظر
با ارزیابی دقیقه اندازه ویژه در هر تکرار برای هر خطا مناظر
که معامل مجموعه فاصله‌های جفت نقاط مناظر تعیین شده -
همت معامله می‌باشد:
\[
\text{error}_{i} = \frac{1}{K} \sum_{j=1}^{K} d_{ij}
\]
(4)

7. تکرار الگوریتم برای کمی کدن خطا
مراحل 2 تا 6 باشید مجموعه‌ای دو داده از آزمایش‌های انجام شده و
دارای اندازه دارای کمی کدن خطا را داشته باشد. اندازه می‌باشد:\n\[T_{kp} = T_{i}; \quad e_{kp} = e_{i} \]
(5)

8. مجموعه موضع اصلاح شده باید موضع اصلاح شده از اعمال دوران و انتقال بهبهانه به موضع جدید را
به سمت ایند:=
\[
R_{new} = \begin{bmatrix} \cos \theta_{new} & -\sin \theta_{new} \\ \sin \theta_{new} & \cos \theta_{new} \end{bmatrix} \times (R_{old} + T_{kp})
\]
(6)
\[
\theta_{new} = \theta_{kp} + T_{kp}
\]
(7)

شبکه کد الگوریتم اندازه‌گیری یکمیت زیر است:
\[
\text{ICP} \left(Z_{ref}, Z_{new}, e_{init} \right)
\]
Generate sample A
\[
A = \{ a_i \} = \{ e_{init} + k \frac{1}{180} \} ; \quad k = -15, -14, 13, 14, 15 \]
for \(e \in A \) do
\[
R_{kp} = \begin{bmatrix} \cos \theta_{kp} & -\sin \theta_{kp} \\ \sin \theta_{kp} & \cos \theta_{kp} \end{bmatrix} \times (R_{old} + T_{kp})
\]
Calculate Correspondence Matrix
\[
T_{kp} = \text{mean} (Z_{ref} (M_{kp})) - \text{mean} (Z_{new} (N_{kp}))
\]
Recalculate Correspondence Matrix
\[
\text{error} = \frac{1}{K} \sum_{j=1}^{K} d_{ij}
\]
endfor
\[
\text{arg} = \text{arg} \min_{\text{error}_{i} = \text{error}}
\]
\[T_{kp} = T_{i}; \quad e_{kp} = e_{i} \]

همان‌طور که در شبکه کد نیز منشأ بودیم‌گام، مساحت‌گزای الگوریتم با تعداد زاویه‌ای مورد مجموعه دو زاویه‌ای از آزمایش‌های انتقال یا اندازه‌گیری
در تعداد این زاویه‌ها کنید: بُه‌یکیندی مساحتی است: (K) (K)
به‌دست آمده‌بیشتر را به زاویه‌ای مورد یک‌بگیرن دویت و دویت بهبود گذاری کمیک، الگوریتم پیچیده و

d\[
\text{Z}_{new}, \quad \text{Z}_{ref}
\]
جدید
\[
\text{Z}_{new}, \quad \text{Z}_{ref}
\]

۳- ارتقاء داده‌ها با روش پیشنهادی احتمال

ارتباطات داده‌ها را ارسال کرده نیز الگوریتم می‌توانیم با استفاده از داده‌های ارزیابی و زاویه‌ای نشان دهنده

\[\text{Z}_{new}, \quad \text{Z}_{ref} \]
جدید
\[\text{Z}_{new}, \quad \text{Z}_{ref} \]

۲- انتقال داده‌ها با روش پیشنهادی احتمال

ارتباطات داده‌ها را ارسال کرده نیز الگوریتم می‌توانیم با استفاده از داده‌های ارزیابی و زاویه‌ای نشان دهنده

\[\text{Z}_{new}, \quad \text{Z}_{ref} \]
جدید
\[\text{Z}_{new}, \quad \text{Z}_{ref} \]

۱- Data Association

۲- Maximum Likelihood (ML)
برای بررسی تأثیر انطباق یوبیسی روی الگوریتم نقشه‌برداری سریع بدون ردیابی، یکی از الگوریتم‌های نقشه‌برداری سریع بدون ردیابی مورد استفاده قرار گرفته که برای این منظور از کد نوشته و معرفی گردیده با پذیرش هر نقطه ارتباط داده اولیه استفاده شده و نهایت آزمون‌های آن تنظیم شده و قابلیت تولید نقشه شبکه‌بندی به این شکل ادامه داده‌شده است.

شکل 1 می‌تواند نقشه شبکه‌بندی شده است.

\[
\text{tri} = \text{ delaunayn} (Z_{\text{map}})
\]

3- هدف نقاط کناری از یوبیسی‌های نقشه و حفظ نیز کناری نقطه
4- محاسبه اتحاد ارتباط جفت نقطه و مقایسه با اسانه پیشنهادی
5- جزئی نقاط یوبیسی جدیدی به عنوان یوبیسی جدید و پیش‌سازی می‌گردد

4- یادسازی و ارزیابی عملکرد الگوریتم نقشه‌برداری سریع بدون ردیابی

در این مقایسه، که از مقدمات و مشخصات سریع بدون ردیابی با انطباق یوبیسی روی داده آمده زبان از شبکه‌هایی و نیز داده‌های پیش‌سازی واقعی انجام شده است. کد الگوریتم نقشه‌برداری سریع بدون ردیابی بر تمرافز مشابه‌شده که نوشته شده و به عنوان کد متغیری در این مقایسه مورد استفاده قرار گرفته و تغییرات آزمون مناسب با ترکیب مناسب روی آن اعمال شده است.

برخی از مهم‌ترین این مغزبررات عبارتند:

- افزودن انطباق یوبیسی
- بهبود سرعت الگوریتم ارتباط داده‌ها
- تولید نقشه شبکه‌بندی می‌تواند
- پیش‌سازی جدار غیرهای الگوریتم از جمله آسانه
- پدیده و رد یوبیسی

خروجی‌های این الگوریتم شبکه‌بندی از نقشه شبکه‌بندی می‌تواند به مسیر واقعی یکی از سه محور رابطه و مسیر نخستین خود نشان دهد. شده مسیر واقعی، می‌تواند به مسیر واقعی، و جهت‌گیری نقش ایندیکس‌های شبکه و قابلیت کنترل حالت ربات‌ها در این مرحله الگوریتم زبان از لایه داده آمده‌روی با پیش‌سازی واقعی یوبیسی

شده بهبودی یابدهنگام این حساسیت مرحله‌ای که توسط گروه پیشگیری وظیفه سیستم‌های یوبیسی است. در این حساسیت، می‌تواند به ربات‌ها مقایسه در نظر گرفته شود. در این سطح به یک دانشگاه ارائه شده است.

4- یادسازی و ارزیابی عملکرد الگوریتم نقشه‌برداری سریع بدون ردیابی

بر اساس اطلاعات موجود در این مقاله می‌تواند است که الگوریتم نقشه‌برداری سریع بدون ردیابی به تصویر یک دانشگاه ارائه شده است.

Fig. 1 Indoor environment and robot path simulated in MATLAB

Fig. 2 Simulation Data: Feature map by Unscented FastSLAM

شکل 2 داده شبیه‌سازی نقشه یوبیسی می‌باشد و مسیر واقعی و مسیر نخستین داده است.

شکل 2 حالت شبیه‌سازی نقشه یوبیسی می‌باشد و مسیر واقعی و مسیر نخستین داده است.
شکل 3 داده شبیه‌سازی: نقشه شبکه‌نگری توسط الگوریتم شبکه‌نگری سریع بدون ردایبیولی

شکل 4-2-1-1-4 الگوریتم شبکه‌نگری سریع بدون ردایبیولی، شبیه‌سازی: داده رایگان برای محیط شبیه‌سازی اعمال شده، شرایطی و یکپارچه بوده و شبکه‌نگری به صورت اینایه در "شکل 4-2-1-1-4 داده شده، داده قابل استفاده از این الگوریتم و می‌تواند در این الگوریتم در جدول 1 آورده شده باشد. مسئله راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست. مسئله شبکه‌نگری را به دست آورد. خطا در این الگوریتم 0.46 را دانست. مسئله شبکه‌نگری را به دست آورد. خطا در این الگوریتم 0.46 را دانست. خطا در این الگوریتم 0.46 را دانست.

شکل 5 داده شبیه‌سازی: نقشه شبکه‌نگری توسط الگوریتم شبکه‌نگری سریع بدون ردایبیولی

شکل 6-1-5-1-6 میزان اریک بهترین میانگین خطا در این الگوریتم توسط الگوریتم را برای هر دو راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست.

شکل 6-2-1-5-6 میزان اریک بهترین میانگین خطا در این الگوریتم توسط الگوریتم را برای هر دو راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست.

شکل 6-3-1-5-6 میزان اریک بهترین میانگین خطا در این الگوریتم توسط الگوریتم را برای هر دو راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست.

شکل 6-4-1-5-6 میزان اریک بهترین میانگین خطا در این الگوریتم توسط الگوریتم را برای هر دو راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست.

شکل 6-5-1-5-6 میزان اریک بهترین میانگین خطا در این الگوریتم توسط الگوریتم را برای هر دو راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست.

شکل 6-6-1-5-6 میزان اریک بهترین میانگین خطا در این الگوریتم توسط الگوریتم را برای هر دو راهنمایی خطا در این الگوریتم در تابع 0.46 را دانست.
جدول 2: سیستم تحالی تخته و چرتکی در اگورهای نشاز‌ریزی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>صفحه ای نشاز‌ریزی</th>
<th>صفحه ای نشاز‌ریزی</th>
<th>صفحه ای نشاز‌ریزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد راه‌ها</td>
<td>75</td>
<td>236</td>
<td>100</td>
</tr>
<tr>
<td>زمان گردش</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>زمان انتقال بوشی</td>
<td>4</td>
<td>219</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Simulation data: Execution time of Unscented FastSLAM for 100 scans

جدول 1: عرضه نشاز‌ریزی تخته و چرتکی در اگورهای نشاز‌ریزی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>صفحه ای نشاز‌ریزی</th>
<th>صفحه ای نشاز‌ریزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد راه‌ها</td>
<td>75</td>
<td>236</td>
</tr>
<tr>
<td>زمان گردش</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>زمان انتقال بوشی</td>
<td>4</td>
<td>219</td>
</tr>
</tbody>
</table>

Table 1 Average position and heading estimation

پیاده‌سازی الگوریتم نشاز‌ریزی سریع بدون رابطی اولیه

یک پایه‌گیری از در مودلهای اولیه و مثبت‌گیری هدایت خود
جدول 3: زمان اجرای الگوریتم نقش‌برداری سریع بدون ردایی برای 100 مسیر

<table>
<thead>
<tr>
<th>مقدار</th>
<th>زمان تنظیم یک مسیر (ثانیه)</th>
<th>زمان تنظیم دو مسیر (ثانیه)</th>
<th>زمان تنظیم سه مسیر (ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>385</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>68</td>
<td>343</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

نتیجه‌گیری و پیشنهادات

در این مقاله برای ساختن یک ترکیب الگوریتم نقش‌برداری سریع بدون ردایی با اطلاع پویشی استفاده شد و سرعت محاسبه ارتباط داده به میزان قابل ملاحظه‌ای بهبود یافت. سپس الگوریتم نقش‌برداری سریع بدون ردایی با اطلاع پویشی روی داده ارتباط به‌دست آمد که این الگوریتم سریع بدون ردایی با اطلاع پویشی مقایسه شد و نتایج آن با تابع نقش‌برداری سریع بدون ردایی به‌دست آمده مطابق بود. یافته‌ها نشان داد که این الگوریتم سریع بدون ردایی نسبت به علاوه بر نقش‌پذیری سیستم و سیستم تبادل داده توسط الگوریتم‌های HRS و الگوریتم‌های HRS است. این نتایج نشان می‌دهد که این الگوریتم پیشی بام زمان و مصرف تقویمی دارد.

همچنین در جدول 3 زمان بایان‌سازی الگوریتم‌های نقش‌برداری سریع برای ساختن داده در مسیر داده روز دانه لیزر واقعی و برای 100 پویش آن داده است. در همچنین ساختن داده دانه لیزر این الگوریتم مربوط به مسیر ارتباط داده‌ها است.

Received 1395, 14th, 6

[8] Z. Kurt-Yavuz, S. Yavuz, A comparison of EKF, UKF,