Volume 19, Issue 12 (December 2019)                   Modares Mechanical Engineering 2019, 19(12): 3007-3022 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javadi Z, Miansari M, Ghorbani B. Retrofit Of Steam Power Plant Using Solar Dish Collectors and Multi-Effect Desalination Cycle (Exergy and Economic Analysis). Modares Mechanical Engineering 2019; 19 (12) :3007-3022
URL: http://mme.modares.ac.ir/article-15-29398-en.html
1- Mechanical Engineering Department, Engineering Faculty, Qaemshahr Branch, Islamic Azad University, ‎Qaemshahr, Iran
2- Mechanical Engineering Department, Engineering Faculty, Qaemshahr Branch, Islamic Azad University, ‎Qaemshahr, Iran , m.miansari@qaemiau.ac.ir
3- Modern Energy Technologies Department, Engineering Modern Technologies Faculty, Amol University of Special Modern Technologies, Amol, Iran
Abstract:   (4877 Views)
Regarding the water and energy crisis, improving the efficiency of thermal systems and heat recovery, along with the use of desalination process, has attracted the attention of many researchers in recent years. For this purpose, thermal desalination process and solar collectors were used in steam power plants. In this study, an integrated structure for simultaneous generation of fresh water and power has been developed using a combination of solar collectors, steam power plant for power generation, ORC cycle, and thermal multi-effect desalination cycle. The integrated structure has the capacity of producing 762.6 kg / s of fresh water, 104.1 MW of power in the rankine cycle and 306.7 MW of power in a steam power plant. In this integrated structure, the efficiency of the steam power plant is 37.24% and the total exergy efficiency is 78.54%. Exergy analysis of the integrated structure shows that the highest destruction of exergy in solar collectors and heat exchangers are equal to 45.2% and 37.27%, respectively. The economic analysis of the developed integrated structure shows that the period of return is 3.838 years, and the prime cost of the product is 0.0325 $/kWh. Moreover, the impact of various parameters on the performance of the integrated structure was investigated using sensitivity analysis.
Full-Text [PDF 1511 kb]   (2083 Downloads)    
Article Type: Original Research | Subject: Renewable Energy
Received: 2019/01/14 | Accepted: 2019/05/26 | Published: 2019/11/21

References
1. Mehrpooya M, Ghorbani B, Hosseini SS. Thermodynamic and economic evaluation of a novel concentrated solar power system integrated with absorption refrigeration and desalination cycles. Energy Conversion and Management. 2018;175:337-356. [Link] [DOI:10.1016/j.enconman.2018.08.109]
2. Mehrpooya M, Ghorbani B, Mousavi SA. Integrated power generation cycle (Kalina cycle) with auxiliary heater and PCM energy storage. Energy Conversion and Management. 2018;177:453-467. [Link] [DOI:10.1016/j.enconman.2018.10.002]
3. Ansarinasaba H, Mehrpooya M. Investigation of a combined molten carbonate fuel cell, gas turbine and stirling engine combined cooling heating and power (CCHP) process by exergy cost sensitivity analysis. Conversion and Management. 2018;165:291-303. [Link] [DOI:10.1016/j.enconman.2018.03.067]
4. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Developing a tri-generation system of power, heating, and freshwater (for an industrial town) by using solar flat plate collectors, multi-stage desalination unit, and Kalina power generation cycle. Energy Conversion and Management. 2018;165:113-126. [Link] [DOI:10.1016/j.enconman.2018.03.040]
5. Mehrpooya M, Hemmatabady H, Ahmadi MH. Optimization of performance of Combined Solar Collector-Geothermal Heat Pump Systems to supply thermal load needed for heating greenhouses. Energy Conversion and Management. 2015;97:382-392. [Link] [DOI:10.1016/j.enconman.2015.03.073]
6. Javidmehr M, Joda F, Mohammadi A. Thermodynamic and economic analyses and optimization of a multigeneration system composed by a compressed air storage, solar dish collector, micro gas turbine, organic Rankine cycle, and desalination system. Energy Conversion and Management. 2018;168:467-481. [Link] [DOI:10.1016/j.enconman.2018.05.019]
7. Loni R, Askari E, Ghobadian B, Kasaeianc AB, Gorjian S. thermodynamic analysis of a solar dish receiver using different nanofluids. Energy. 2017;133:749-760. [Link] [DOI:10.1016/j.energy.2017.05.016]
8. Mohammadi A, Kasaeian A, Pourfayaz F, Ahmadi MH. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Applied Thermal Engineering. 2017;111:379-406. [Link] [DOI:10.1016/j.applthermaleng.2016.09.098]
9. Argun ME, Kulaksız AA. Performance investigation of a new solar desalination unit based on sequential flat plate and parabolic dish collector. International Journal of Green Energy. 2017;14(6):561-568. [Link] [DOI:10.1080/15435075.2017.1310106]
10. Mehrpooya M, Tosang E, Dadak A. Investigation of a combined cycle power plant coupled with a parabolic trough solar field and high temperature energy storage system. Energy Conversion and Management. 2018;171:1662-1674. [Link] [DOI:10.1016/j.enconman.2018.07.001]
11. Mohammadi A, Mehrpooya M. Energy and exergy analyses of a combined desalination and CCHP system driven by geothermal energy. Applied Thermal Engineering. 2017;116:685-694. [Link] [DOI:10.1016/j.applthermaleng.2017.01.114]
12. Nikbakht Naserabad S, Mobini K, Mehrpanahi A, Aligoodarz MR. Technical analysis of conversion of a steam power plant to combined cycle, using two types of heavy duty gas turbines. International Journal of Engineering, Transactions B: Applications. 2015;28(5):781-793. [Link] [DOI:10.5829/idosi.ije.2015.28.05b.17]
13. Nikbakht Naserabad S, Mobini K, Mehrpanahi A, Aligoodarz MR. Exergy-energy analysis of full repowering of a steam power plant. Frontiers in Energy. 2015;9(1):54-67. [Link] [DOI:10.1007/s11708-014-0342-6]
14. Hafdhi F, Khir T, Ben Yahia A, Ben Brahim A. Exergoeconomic optimization of a double effect desalination unit used in an industrial steam power plant. Desalination. 2018;438:63-82. [Link] [DOI:10.1016/j.desal.2018.03.020]
15. Khanmohammadi S, Azimian AR, Khanmohammadi S. Exergy and exergo-economic evaluation of Isfahan steam power plant. International Journal of Energy. 2013;12(2):249-272. [Link] [DOI:10.1504/IJEX.2013.053386]
16. Ahmadi G, Toghraie D, Ali Akbari O. Solar parallel feed water heating repowering of a steam power plant: A case study in Iran. Renewable and Sustainable Energy Reviews. 2017;77:474-485. [Link] [DOI:10.1016/j.rser.2017.04.019]
17. Khoshgoftar Manesh MH, Amidpour M. Multi-objective thermoeconomic optimization of coupling MSF desalination with PWR nuclear power plant through evolutionary algorithms. Desalination. 2009;249(3):1332-1344. [Link] [DOI:10.1016/j.desal.2008.08.016]
18. Moradi M, Mehrpooya M. Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower. Energy. 2017;130:530-543. [Link] [DOI:10.1016/j.energy.2017.05.001]
19. Safarian S, Aramoun F. Energy and exergy assessments of modified Organic Rankine Cycles (ORCs). Energy Reports. 2015;1:1-7. [Link] [DOI:10.1016/j.egyr.2014.10.003]
20. Power M. The audit explosion. London: Demos; 1994. [Link]
21. Ghorbani B, Shirmohammadi R, Mehrpooya M, Hamedi MH. Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm. Energy 2018;159:410-428. [Link] [DOI:10.1016/j.energy.2018.06.078]
22. Ghorbani B, Hamedi MH and Amidpour M. Exergoeconomic evaluation of an integrated nitrogen rejection unit with LNG and NGL Co-Production processes based on the MFC and absorbtion refrigeration systems. Gas Processing Journal. 2016;4(1):1-28. [Link]
23. Ghorbani B, Hamedi MH, Shirmohammadi R, Hamedi M, Mehrpooya M. Exergoeconomic analysis and multi-objective Pareto optimization of the C3MR liquefaction process. Sustainable Energy Technologies and Assessments. 2016;17:56-67. [Link] [DOI:10.1016/j.seta.2016.09.001]
24. Akbarpour Reyhani H, Meratizaman M, Ebrahimi A, Pourali O, Amidpour M. Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification. Energy. 2016;107:141-164. [Link] [DOI:10.1016/j.energy.2016.04.010]
25. Wang Y, Lior N. Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems: Part 1: The desalination unit and its combination with a steam-injected gas turbine power system. Desalination. 2006;196(1-3):84-104. [Link] [DOI:10.1016/j.desal.2006.01.010]
26. Mehrpooya M, Ghorbani B, and Hosseini SS. Developing and exergetic performance assessment of biogas upgrading process driven by flat plate solar collectors coupled with Kalina power cycle. Energy Conversion and Management. 2019;181:398-413. [Link] [DOI:10.1016/j.enconman.2018.12.025]
27. Ghorbani B, Hamedi MH, Amidpour M, Shirmohammadi R. Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit. International Journal of Refrigeration. 2017;77:20-38. [Link] [DOI:10.1016/j.ijrefrig.2017.02.030]
28. Ebrahimi A, Meratizaman M, Akbarpour Reyhani H, Pourali O, Amidpour M. Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy. 2015;90:1298-1316. [Link] [DOI:10.1016/j.energy.2015.06.083]
29. Ghorbani B, Mehrpooya M, Ghasemzadeh H. Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process. Energy. 2018;158:1105-1119. [Link] [DOI:10.1016/j.energy.2018.06.099]
30. Ashouri M, Mohammadi Khoshkar Vandani A, Mehrpooya M, Ahmadi MH, Abdollahpour A. Techno-economic assessment of a Kalina cycle driven by a parabolic trough solar collector. Energy Conversion and Management. 2015;105:1328-1339. [Link] [DOI:10.1016/j.enconman.2015.09.015]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.