Volume 19, Issue 9 (2019)                   Modares Mechanical Engineering 2019, 19(9): 2093-2104 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bakhtiari E. Effects of Oscillation Parameters of a Wind Turbine Airfoil with Slip Velocities on Aerodynamic Loads. Modares Mechanical Engineering. 2019; 19 (9) :2093-2104
URL: http://journals.modares.ac.ir/article-15-29898-en.html
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran , ebakhtiari@ut.ac.ir
Abstract:   (497 Views)
A wind turbine airfoil was analysed, using computational fluid dynamics (CFD) to study the oscillating effects and slip boundary conditions. The slip boundary condition is due to applying superhydrophobic surface. Fluids on these surfaces are repelled. The superhydrophobic surface can delay the icing on blades. The surfaces is assumed at the leading edge; the icing can occur on this region. The chosen oscillation parameters was enough for modelling dynamic stall. The dynamic stall cause a severe loading on the blade. This phenomenon is depicted by two vortices: leading edge vortex and trailing edge vortex. Three reduced frequencies are considered:  in a range of  slip lengths. In this regard, the Transition-SST model is applied for SD7037 airfoil with. The results showed that applying a superhydrophobic surface with low values of the slip length cannot be appropriate during the oscillating motion; but at the slip lengths larger than 100 microns, the aerodynamic coefficients are significantly changed. At the highest reduced frequency, the lift and drag coefficients are reduced about 12% and 40%, respectively. Increasing the slip length postponed the vortex formation and stall angle.
Full-Text [PDF 2364 kb]   (60 Downloads)    

Received: 2018/09/3 | Accepted: 2019/01/29 | Published: 2019/09/1

References
1. Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance. Renewable and Sustainable Energy Reviews. 2009;13(2):428-438. [Link] [DOI:10.1016/j.rser.2007.11.009]
2. Tammelin B, Säntti K. Estimation of rime accretion at high altitudes-preliminary results. In: Tammelin B, editor. Boreas III: Wind energy production in cold climates, proceedings of an international meeting, 19-21 March 1996, Saariselkä, Finland. Helsinki: Finnish Meteorological Institute; 1996. pp. 194-210. [Link]
3. Tammelin B, Böhringer A, Cavaliere M, Holttinen H, Morgan C, Seifert H, et al. Wind energy production in cold climate. Helsinki: Finnish Meteorological Institute; 2000. [Link]
4. Laakso T, Baring-Gould I, Durstewitz M, Horbaty R, Lacroix A, Peltola E, et al. State-of-the-art of wind energy in cold climates [Internet]. Finland: VTT Technical Research Centre of Finland; 2010 [2018 Sep 01]. Available from: https://www.vtt.fi/inf/pdf/workingpapers/2010/W152.pdf [Link]
5. Jasinski WJ, Noe SC, Selig MS, Bragg MB. Wind turbine performance under icing conditions. Journal of Solar Energy Engineering. 1998;120(1):60-65. [Link] [DOI:10.1115/1.2888048]
6. Antikainen P. Ice loads, case study. The Proceedings of BOREAS V, Levi, Finland, 2000-11. Helsinki: Finnish Meteorological Institute; 2000. [Link]
7. Homola MC, Virk MS, Wallenius T, Nicklasson PJ, Sundsbø PA. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics. 2010;98(12):724-729. [Link] [DOI:10.1016/j.jweia.2010.06.007]
8. Makkonen L, editor. Ice and construction. 1st Edition. London: Chapman & Hall; 1994. p. 132. [Link]
9. Maissan JF, Eng P. Wind power development in sub-arctic conditions with severe rime icing. The Northern Review. 2001;(24):174-183. [Link]
10. Seifert H. Technical requirements for rotor blades operating in cold climate. In Proceeding of VI BOREAS, Pyhatunturi, Finland, 2003. Unknown City: Unknown Publisher; Unknown Year. [Link]
11. Hejazi V, Sobolev K, Nosonovsky M. From superhydrophobicity to icephobicity: Forces and interaction analysis. Scientific Reports. 2013;3:2194. [Link] [DOI:10.1038/srep02194]
12. Laforte C, Laforte JL, Carrière JC. How a solid coating can reduce the adhesion of ice on a structure. In Unkown Proceeding. Unknown City: Unknown Publisher; Unknown Year. [Unknown Language] [Link]
13. Laforte JL, Allaire MA, Laflamme J. State-of-the-art on power line de-icing. Atmospheric Research. 1998;46(1-2):143-158. [Link] [DOI:10.1016/S0169-8095(97)00057-4]
14. Anderson D, Reich A. Tests of the performance of coatings for low ice adhesion. 35th Aerospace Sciences Meeting and Exhibit. New York: AIAA; 1997. p. 303. [Link] [DOI:10.2514/6.1997-303]
15. Cao L, Jones AK, Sikka VK, Wu J, Gao D. Anti-icing superhydrophobic coatings. Langmuir. 2009;25(21):12444-12448. [Link] [DOI:10.1021/la902882b]
16. Antonini C, Innocenti M, Horn T, Marengo M, Amirfazli A. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Regions Science and Technology. 2011;67(1-2):58-67. [Link] [DOI:10.1016/j.coldregions.2011.02.006]
17. Carr LW. Progress in analysis and prediction of dynamic stall. Journal of Aircraft. 1988;25(1):6-17. [Link] [DOI:10.2514/3.45534]
18. Gharali K, Johnson DA. Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies. Applied Energy. 2012;93:45-52. [Link] [DOI:10.1016/j.apenergy.2011.04.037]
19. Carta FO. Effect of unsteady pressure gradient reduction on dynamic stall delay. Journal of Aircraft. 1971;8(10):839-841. [Link] [DOI:10.2514/3.59179]
20. Mc Croskey WJ. The phenomenon of dynamic stall. Fort Belvoir: Defense Technical Information Center; 1981. [Link]
21. Corke TC, Thomas FO. Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects. Annual Review of Fluid Mechanics. 2015;47:479-505. [Link] [DOI:10.1146/annurev-fluid-010814-013632]
22. Ericsson LE. Moving wall effects in unsteady flow. Journal of Aircraft. 1988;25(11):977-990. [Link] [DOI:10.2514/3.45691]
23. Gordon Leishman J. Principles of helicopter aerodynamics. Cambridge UK: Cambridge University Press; 2000. [Link]
24. Reynolds WC, Carr L. Review of unsteady, driven, separated flows. Shear Flow Control Conference 12 March 1985 - 14 March 1985 Boulder,CO,U.S.A. New York: AIAA; 1985. p. 527. [Link] [DOI:10.2514/6.1985-527]
25. Gharali K, Gu M, Johnson DA. A PIV Study of a low Reynolds number pitch oscillating SD7037 Airfoil in dynamic stall with CFD comparison. 16th Int Symp on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 09-12 July, 2012. Unknown City: Unknown Publisher; Unknown Year. p. 9-12. [Link]
26. Gharali K, Johnson DA. PIV-based load investigation in dynamic stall for different reduced frequencies. Experiments in Fluids. 2014;55:1803. [Link] [DOI:10.1007/s00348-014-1803-8]
27. Gharali K, Gharaei E, Soltani M, Raahemifar K. Reduced frequency effects on combined oscillations, angle of attack and free stream oscillations, for a wind turbine blade element. Renewable Energy. 2018;115:252-259. [Link] [DOI:10.1016/j.renene.2017.08.042]
28. Rasekh S, Karimian Aliabadi S, Hosseinidoust M. Comparison of dynamic stall models using numerical and semi-empirical approaches for a wind-turbine airfoil. Modares Mechanical Engineering. 2018;18(3):282-290. [Persian] [Link]
29. Rasekh S, Hosseini Doust M, Karimian Aliabadi S. Accuracy of dynamic stall response for wind turbine airfoils based on semi-empirical and numerical methods. Journal of Applied Fluid Mechanics. 2018;11(5):1287-1296. [Link] [DOI:10.29252/jafm.11.05.28668]
30. Bakhtiari E, Gharali K, Chini SF. Effects of superhydrophobic surfaces for a wind turbine blade element. Proceeding of ICCE2017: 6th international conference and exhibition on Clean Energy, Toronto, Canada. Unknown City: Unknown Publisher; 2017. p. 27-36. [Link]
31. Bakhtiari E, Gharali K, Chini F. A numerical study of slip velocity effects on a 2D airfoil dynamic analysis. Modares Mechanical Engineering. 2018;18(8):183-192. [Persian] [Link]
32. Rothstein JP. Slip on superhydrophobic surfaces. Annual Review of Fluid Mechanics. 2010;42:89-109. [Link] [DOI:10.1146/annurev-fluid-121108-145558]
33. Navier CL. Memory on the laws of the movement of fluids. Académie des sciences (France). 1823;6(1823):389-440. [French] [Link]
34. Sbragaglia M, Prosperetti A. Effective velocity boundary condition at a mixed slip surface. Journal of Fluid Mechanics. 2007;578:435-451. [Link] [DOI:10.1017/S0022112007005149]
35. Watanabe K, Udagawa Y, Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. Journal of Fluid Mechanics. 1999;381:225-238. [Link] [DOI:10.1017/S0022112098003747]
36. Gharali K, Johnson DA. Effects of nonuniform incident velocity on a dynamic wind turbine airfoil. Wind Energy. 2015;18(2):237-251. [Link] [DOI:10.1002/we.1694]
37. Hansen AC. Yaw dynamics of horizontal axis wind turbines [Internet]. Golden CO: National Renewable Energy Laboratory; 1992 [cited 2018 Sep 01]. Available from: https://www.osti.gov/biblio/10144778 [Link] [DOI:10.2172/5406093]
38. AID. SD7037-092-88 [Internet]. Unknown City: Airfoil Investigation Database; Unknown Year [cited 2018 Sep 01]. Available from: http://airfoiltools.com/airfoil/details?airfoil=sd7037-il. [Link]
39. Langtry RB, Menter FR. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal. 2009;47(12):2894-2906. [Link] [DOI:10.2514/1.42362]
40. Liu X, Lu C, Liang Sh, Godbole A, Chen Y. Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades. Applied Energy. 2017;185(Pt 2):1109-1119. [Link] [DOI:10.1016/j.apenergy.2015.11.080]
41. Ericsson LE, Reding JP. Unsteady flow concepts for dynamic stall analysis. Journal of Aircraft. 1984;21(8):601-606. [Link] [DOI:10.2514/3.45029]
42. Gharali K, Johnson DA. Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. Journal of Fluids and Structures. 2013;42:228-244. [Link] [DOI:10.1016/j.jfluidstructs.2013.05.005]
43. Kundu P, Cohen I. Fluid mechanics. Cambridge MA: Academic Press; 2001. p. 130. [Link]
44. Wang Sh, Ingham DB, Ma L, Pourkashanian M, Tao Z. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers & Fluids. 2010;39(9):1529-1541. [Link] [DOI:10.1016/j.compfluid.2010.05.004]
45. Choudhry A, Arjomandi M, Kelso R. Horizontal axis wind turbine dynamic stall predictions based on wind speed and direction variability. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy. 2013;227(3):338-351. [Link] [DOI:10.1177/0957650912470941]
46. Karbasian HR, Esfahani JA, Barati E. Effect of acceleration on dynamic stall of airfoil in unsteady operating conditions. Wind Energy. 2016;19(1):17-33. [Link] [DOI:10.1002/we.1818]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author