بررسی پایداری فرآیند در تراش کاری ارتعاشی

محتوى شکلکی:

مقدمه

ارتعاش آزاد یا ارتعاشی خود-برانگیخته است که در فرآیندهای مکانیکی به سطح برخورد کرده و پوشه مکانیکی را تغییر می‌دهد. این ارتعاش به واسطه تغییرات فزاینده یا نزولی، 능یت یا نیروی میانگین مناسبی که می‌تواند بر روی سطح محیطی را تغییر دهد. این تغییرات می‌تواند به صورت سطحی، کنترل شونده باشند و به واسطه بروز اختلالات در سطح کاری نیز به منظور بهبود کارایی و بهبود کلاس پردازش کاری می‌باشد.

بحث

استدرسای استفاده از روش بالاستری برای کاهش ارتعاشات

در بالایی بوده و معمولاً به روشهای عادی حل می‌گردد. در سال 2000، نتایج‌برداری از فرآیند نوری متفاوتی برای تغییر در نوع و شدت ارتعاشات پژوهشگران کنک نمازی بوده و به واسطه این اثر، ارتعاشات کمتری را به دست می‌دهند.

کلماتچی:

ارتعاشات یک اثر مهم در تراش‌کاری می‌باشد و به واسطه این اثر، کارایی و کلاس پردازش کاری می‌زیان می‌شود. در اینجا، به بررسی سیستم سیرکولاری او برای کاهش ارتعاشات پرداخته می‌شود.

کیفیت

ارتعاشات آزاد در تراش‌کاری به صورت سطحی، کنترل شونده باشند و به واسطه بروز اختلالات در سطح کاری نیز به منظور بهبود کارایی و بهبود کلاس پردازش کاری می‌باشد.

استرکسایت

Please cite this article using:
بررسی پیاده‌سازی فرآیند در تراش کاری ارتقاء

باربری یا بهترین غیرممکن نیز در فرآیند تراش کاری و نظر گرفته شده است، علاوه بر این فراست مدل شده است.

\[
G = \frac{1}{k} \left(\frac{1}{a_0} \left(\frac{a_0}{a} \right) \right)^2 + \frac{1}{2} \left(\frac{a_0}{a} \right)^2
\]

در تراش کاری به کمک ارتفاعات الکترونیک، ارتفاعات فرکانس بالا به حرکت معمول این تراش کاری افزایش می‌یابد که نتیجه نیروهای متوسط ماهینه‌ای 9). از این ضریب می‌توان شیلیکون از 10.90، کاهش خطا می‌باشد.

از مراحل این فرآیند است، مهندسین بایستند این فرآیند در کاهش نیرو و ایجاد بسیار کاهش استفاده می‌کنند. این فرآیند در کاهش تراش کاری به کمک ارتفاعات الکترونیک، جداسازی از منطقه برخی و اینکه این دسته از ایجاد پایداری بیشتر در پایان تراش کاری ارتقاء شده است.

شیبو و ایجاد پایداری انرژی تراش کاری ارتقاء شده است.

سیستم ترک کاری است که در رابطه برای پیان شده است (1). این که در سیستم ترک کاری به یکی از سیستمهای فرکانس-تیم که سیستم سیستم‌های (2) استفاده می‌کند.

\[
\begin{align*}
\text{Fig. 1 Variations in chip thickness} \\
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 2 Schematic figure of tool vibration in different depth of cut a) unstable b) margin of stability c) stable} \\
\end{align*}
\]

\[
\text{کشکل 1 تغییرات ضخامت برداره}
\]

\[
\text{کشکل 2 نمودار شماتیک ارتفاعات ایز از شرایط مختلف عمق برخی} \\
\]

\[
\text{مربی‌پایداره} (8)
\]

\[
\text{مربی‌پایداره} (9)
\]

\[
\text{مربی‌پایداره} (10)
\]

\[
\text{مربی‌پایداره} (11)
\]
Depth of cut=2.3 mm, Spindle speed =200 rpm,
Feed rate=0.1 mm/rev, Frequency =20 kHz, Amplitude =1 mm

\[
\text{m}_{\text{cut}}(t) + \text{c}_{\text{cut}}(t) + \text{k}(t) = \text{d} + \text{P}
\]

(6)

(7)

\[
\frac{m(t) + c(t) + k(t)}{m_{\text{cut}}(t) + \text{c}_{\text{cut}}(t) + \text{k}(t) + k_{\text{cut}}(t)} = \frac{d(t) + \text{P}}{d(t) + \text{P}}
\]

Depth of cut=2.3 mm, Spindle speed =200 rpm, Feed rate=0.1 mm/rev, Frequency =20 kHz, Amplitude =1 mm

\[
\text{f}(t) = \begin{cases} 1, & \text{if } t < t_{\text{cut}} \\ t_{\text{cut}} + c(t), & \text{if } t \geq t_{\text{cut}} \end{cases}
\]

(8)

(9)

\[
f(t) = \frac{1}{t_{\text{cut}} + c(t)}
\]

Results of first model a) Conventional turning b) Vibrational turning

(a) Depth of cut=2.3 mm, Spindle speed =200 rpm, Feed rate=0.1 mm/rev, Frequency =20 kHz, Amplitude =1 mm

(b) Depth of cut=2.3 mm, Spindle speed =200 rpm, Feed rate=0.1 mm/rev, Frequency =20 kHz, Amplitude =1 mm

Dormand–Prince (RKDP) method

Table 1 Dynamic properties of CNC-TME40 lathe

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (N/m)</td>
<td>N/m</td>
<td>618150</td>
</tr>
<tr>
<td>c (Ns/m)</td>
<td>Ns/m</td>
<td>2764.8</td>
</tr>
<tr>
<td>m (kg)</td>
<td>kg</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 2 Cutting parameter of turning process

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (N/mm)</td>
<td>N/mm</td>
<td>250.46</td>
</tr>
<tr>
<td>h0 (mm)</td>
<td>mm</td>
<td>0.1</td>
</tr>
</tbody>
</table>

1 Dormand–Prince (RKDP) method

CNC-TME40
Fig. 4 Tool separation and stability increase in vibrational turning

Fig. 5 Results of second model a) Conventional turning b) Vibrational turning

Fig. 6 Depth of cut resulted from modeling (square marker) vs. closed form solution of stability lobe (solid line) in conventional turning of CNC-TME40 lathe machine

Fig. 7 Depth of cut resulted from modeling (square marker) vs. closed form solution of stability lobe (solid line) in conventional turning of CNC-TME40 lathe machine
3-1- به دست آوردن عمق بریز جرایی به دنبال نورهای حاصل از حرکت در دستگاه تراس و نیز ارتعاش الکتریکی تراس کاری ارتعاشی. جابجایی الکتریکی به راهآهن با استفاده از حسگر جرایی گردانی قابل نشانی نیست، به هیمن دلیل تمامی قطعات این انتا ارتعاش کاری

جدول 3: فاکتورهای ورودی آزمایش، مسیر و اندازه

<table>
<thead>
<tr>
<th>نام فاکتور</th>
<th>واحد</th>
<th>مسیر</th>
<th>اندازه</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
<td>0,47,10,13</td>
<td>50,100,200,300,400</td>
<td>0.05,0.1,0.15,0.2,0.25</td>
</tr>
</tbody>
</table>

جدول 4: شرایط آزمایش

<table>
<thead>
<tr>
<th>شرایط بریز</th>
<th>سرعت بریز</th>
<th>سرعت پیش‌تر</th>
<th>سرعت اندازه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
<td>4.7,9,14,19,28,37</td>
<td>0.05,0.1,0.15,0.2,0.25</td>
<td>0.1,0.15,0.2,0.25</td>
</tr>
</tbody>
</table>

4-2- نتایی آزمایش‌ها

از آنجایی که فرآیند تراس کاری به صورت لوله‌زا و دامنه به دست آمده است، سرعت زیادی از ارتعاش از آزمه در اثر بریز در ورودی که به دست آمده است در

شکل 8 نشان داده شده است. جابجایی الکتریکی به راه آهن با استفاده از حسگر جرایی

![Şekil 8 Experimental setup (Instruments, Generators, Scopes, etc.)](image_url)

شکل 7 نشان داده شده است. جابجایی الکتریکی به راه آهن با استفاده از حسگر جرایی

![Şekil 7 Experimental setup (Work-piece, Tool, Instruments, etc.)](image_url)
سرعت پیشروی مقدار عمق برخی برای کاهش پانجره است این کاهش عمق برخی به‌دلیل کاهش ضریب یک‌باری فرآیند است که ماهیتی غیرخطی دارد. در مورد سرعت دوربین باید فقط نمودار داده شده در حقیقت پرشه از نمودار پایداری می‌باشد که خود دیدی بر صحیح آماری‌سازی صورت گرفته است.

نمودار نرمال بودن خطای در "شکل 13 و 14" نشان داده شده است. P-Value عدد نشان دهنده آن است که شرط نرمال بودن خطای به درستی تحقق پایه است در "شکل 15" توزیع خطای در اطراف منحنی برازش شده نشان داده شده است. نتایج بدین جنس خطای نشان از مستقل بودن آنها دارد.

امد است. این مقایسه در "شکل 12" نشان داده شده است. همان‌گونه که مشخص است، بیشترین تأثیر را بر عمق برخی بیانگر اینست که سرعت پیشروی و سپس دامنه ارتعاشات ارتقاویک دارد. بهترین دامنه ارتعاشی سطح 5 (13 میکرون) بهترین سرعت پیشروی، سطح 1 (0.5 میلی‌متر بر دور) و بهترین سرعت دوربین، سطح 4 (300 دور بر دقیقه) است.

شکل 9 نمودار پایداری در تناسب کار ارتقاویک و سپس به کمک مدل سازی Feed rate=0.1 mm/rev, f=20 kHz

Fig. 9 Stability border in conventional and vibrational turning

شکل 10 Model results for critical depth of cut

Fig. 10 Probability plot shows normality of errors

اندرودن نرمال بودن خطای Feed rate=0.1 mm/rev, f=20 kHz

Fig. 13 Probability plot shows normality of errors

شکل 14 نمودار نرمال بودن خطای Feed rate=0.1 mm/rev, f=20 kHz

Fig. 14 Errors are normal

شکل 13 نمودار نرمال بودن خطای Feed rate=0.1 mm/rev, f=20 kHz

شکل 12 نمودار میانگین داده‌ها نسبت به سطوح ورودی

Fig. 12 Mean values of depth of cut vs. input parameter levels

شکل 11 Chips a) with chatter mark b) without chatter

Fig. 11 Chips a) with chatter mark b) without chatter

با افزایش مقدار دامنه از ارتعاشات ارتقاویک مقادیر عمق برخی بحران افزایش یافته است. این روند در مورد سرعت پیشروی معکوس بوده و با افزایش
Fig. 15 Residuals are in a random pattern

Fig. 16 Interaction plot for depth of cut vs. input parameter levels

Fig. 17 Depth of cut vs. spindle speeds and different tool vibration amplitude

Table 5 Predicted and experimental test depth of cut

[36] J. L. Overcash, J. F. Cuttino, In-process modeling of dynamic tool-