Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1409-1421 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeili H, Adibi H, Rezaei S. Surface Quality, Efficiency and Process Optimization of Grinding Carbon Fiber-Reinforced Silicon Carbide Composite. Modares Mechanical Engineering 2020; 20 (6) :1409-1421
URL: http://mme.modares.ac.ir/article-15-34728-en.html
1- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran
2- Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran , hadibi@aut.ac.ir
Abstract:   (2997 Views)
Ceramic Matrix Composites (CMCs) are designed to overcome the main drawbacks of monolithic ceramics, especially their brittleness, in high-performance and safety-critical applications. Owing to the inherent properties of CMCs, especially heterogeneous structure, anisotropic thermal and mechanical behavior, and the hard nature of fibers or matrix, the machining process becomes extremely challenging as the generated surface suffers from undesirable quality. Taking the high hardness of ceramic matrix into account, grinding with diamond abrasives is the only efficient way for machining of CMC materials. The aim of this paper was to study the influence of grinding parameters (cutting speed, feed speed, and depth of cut) and different cooling-lubrication conditions (i.e. dry, fluid, and minimum quantity lubrication) on surface roughness, process efficiency, and tool wear. The results indicated that MQL leads to the best results in terms of surface quality and process performance. Furthermore, increasing of cutting speed and feed speed decreased and increased surface roughness, respectively, while depth of cut had an insignificant effect on the roughness value. Regarding the experimental results, four machining strategies considering quality, productivity, and efficiency criteria were developed. Eventually, the material removal mechanism was evaluated using SEM photos, indicating that brittle fracture is the dominant removal behavior of CMC materials.
Full-Text [PDF 1966 kb]   (1557 Downloads)    
Article Type: Original Research | Subject: Machining
Received: 2019/07/13 | Accepted: 2019/12/30 | Published: 2020/06/20

References
1. Chung D. Carbon composites. 2nd edition. United States: Butterworth-Heinemann; 2016. pp. 467-531. [Link] [DOI:10.1016/B978-0-12-804459-9.00008-7]
2. Bian G, Wu H. Friction and surface fracture of a silicon carbide ceramic brake disc tested against a steel pad. Journal of the European Ceramic Society. 2015;35(14):3797-3807. [Link] [DOI:10.1016/j.jeurceramsoc.2015.07.009]
3. Gavalda Diaz O, Garcia Luna G, Liao Z, Axinte D. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity. International Journal of Machine Tools and Manufacture. 2019;139:24-36. [Link] [DOI:10.1016/j.ijmachtools.2019.01.003]
4. Avishan B, Zamini RS. Effect of graphite nanoparticles addition into cutting fluid on surface quality and tool wear of 16MnCr5 machinned steel. Modares Mechanical Engineering. 2018;18(3):56-64. [Persian] [Link]
5. Du J, Zhang H, Geng Y, Ming W, He W, Ma J, et al. A review on machining of carbon fiber reinforced ceramic matrix composites. Ceramics International. 2019;45(15):18155-18166. [Link] [DOI:10.1016/j.ceramint.2019.06.112]
6. Rabiei F, Rahimi A, Hadad M. Performance improvement of eco-friendly MQL technique by using hybrid nanofluid and ultrasonic-assisted grinding. The International Journal of Advanced Manufacturing Technology. 2017;93(1-4):1001-1015. [Link] [DOI:10.1007/s00170-017-0521-9]
7. Emami M, Sadeghi MH. Study of the effect of lubricant type and tool (grinding wheel) material on the performance of minimum quantity lubrication in grinding of advanced ceramics. Modares Mechanical Engineering. 2018;18(2):281-292. [Persian] [Link]
8. Qu S, Gong Y, Yang Y, Wen X, Yin G. Grinding characteristics and removal mechanisms of unidirectional carbon fibre reinforced silicon carbide ceramic matrix composites. Ceramics International. 2019;45(3):3059-3071. [Link] [DOI:10.1016/j.ceramint.2018.10.178]
9. Gong Y, Qu S, Yang Y, Liang C, Li P, She Y. Some observations in grinding SiC and silicon carbide ceramic matrix composite material. The International Journal of Advanced Manufacturing Technology. 2019;103:3175-3186. [Link] [DOI:10.1007/s00170-019-03735-w]
10. Du J, Ming W, Ma J, He W, Cao Y, Li X, et al. New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite. Ceramics International. 2018;44(12):13916-1328. [Link] [DOI:10.1016/j.ceramint.2018.04.240]
11. Qu S, Gong Y, Yang Y, Cai M, Sun Y. Surface topography and roughness of silicon carbide ceramic matrix composites. Ceramics International. 2018;44(12):14742-1453. [Link] [DOI:10.1016/j.ceramint.2018.05.104]
12. Liu C, Ding W, Yu T, Yang C. Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precision Engineering. 2018;51:68-77. [Link] [DOI:10.1016/j.precisioneng.2017.07.012]
13. Zhang Z, Yao P, Wang J, Huang C, Cai R, Zhu H. Analytical modeling of surface roughness in precision grinding of particle reinforced metal matrix composites considering nanomechanical response of material. International Journal of Mechanical Sciences. 2019;157-158:243-253. [] [DOI:10.1016/j.ijmecsci.2019.04.047]
14. Boubekri N, Shaikh V. Minimum quantity lubrication (MQL) in machining: Benefits and drawbacks. Journal of Industrial and Intelligent Information. 2015;3(3):205-209. [Link] [DOI:10.12720/jiii.3.3.205-209]
15. Babu MN, Anandan V, Muthukrishnan N, Santhanakumar M. End milling of AISI 304 steel using Minimum Quantity Lubrication. Measurement. 2019;138:681-689. [Link] [DOI:10.1016/j.measurement.2019.01.064]
16. Adibi H, Esmaeili H, Rezaei S. Study on minimum quantity lubrication (MQL) in grinding of carbon fiber-reinforced SiC matrix composites (CMCs). The International Journal of Advanced Manufacturing Technology. 2018;95(9-12):3753-3767. [Link] [DOI:10.1007/s00170-017-1464-x]
17. Esmaeili H, Adibi H, Rezaei SM. Experimental study on grinding forces and specific energy in three different environments of grinding carbon fiber reinforced silicon carbide composite. Modares Mechanical Engineering. 2018;18(1):379-387. [Persian] [Link]
18. Rabiei F, Rahimi A, Hadad M, Ashrafijou M. Investigation of the effect of minimum quantity lubrication technique on performance of the grinding of HSS. Modares Mechanical Engineering. 2013;13(4):1-12. [Persian] [Link]
19. Bansal NP, editor. Handbook of ceramic composites. Berlin: Springer; 2005. [Link] [DOI:10.1007/b104068]
20. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics. 2016;29(4):1084-1095. [Link] [DOI:10.1016/j.cja.2015.10.012]
21. Tawakoli T, Hadad M, Sadeghi M. Influence of oil mist parameters on minimum quantity lubrication-MQL grinding process. International Journal of Machine Tools and Manufacture. 2010;50(6):521-531. [Link] [DOI:10.1016/j.ijmachtools.2010.03.005]
22. Malkin S, Guo C. Grinding technology: Theory and application of machining with abrasives. New York: Industrial Press Inc.; 2008. [Link]
23. Esmaeilzare A, Gholipour H, Adibi H, Rezaei SM. Surface and Subsurface Damage Measurements in Zerodur Glass-Ceramic Grinding Process and their Correlation with Surface Roughness. Modares Mechanical Engineering. 2015;15(13):339-344. [Persian] [Link]
24. Marinescu ID, Hitchiner MP, Uhlmann E, Rowe WB, Inasaki I. Handbook of machining with grinding wheels. 2nd edition. United States: CRC Press; 2019. [Link]
25. Vidal G, Ortega N, Bravo H, Dubar M, González H. An Analysis of Electroplated cBN Grinding Wheel Wear and Conditioning during Creep Feed Grinding of Aeronautical Alloys. Metals. 2018;8(5):350. [Link] [DOI:10.3390/met8050350]
26. Candioti LV, De Zan MM, Camara MS, Goicoechea HC. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta. 2014;124:123-138. [Link] [DOI:10.1016/j.talanta.2014.01.034]
27. Derringer G, Suich R. Simultaneous Optimization of Several Response Variables. Journal of Quality Technology. 1980;12(4):214-219. [Link] [DOI:10.1080/00224065.1980.11980968]
28. Atkins T. Chapter 3 - Simple orthogonal cutting of floppy, brittle and ductile materials. in: atkins t, editor. the science and engineering of cutting. Oxford: Butterworth-Heinemann; 2009. pp. 35-74. [Link] [DOI:10.1016/B978-0-7506-8531-3.00003-1]
29. Gavalda Diaz O, Axinte DA. Towards understanding the cutting and fracture mechanism in Ceramic Matrix Composites. International Journal of Machine Tools and Manufacture. 2017;118-119:12-25. [Link] [DOI:10.1016/j.ijmachtools.2017.03.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.