Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1801-1814 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emami H, Shakouri E, Saraeian P. Study of the Effect of Cutting Parameters with Abrasive Water Jet on the Surface Roughness, Burr Formation and Striation Angle in Aluminum 111H-5754 Parts. Modares Mechanical Engineering 2020; 20 (7) :1801-1814
URL: http://mme.modares.ac.ir/article-15-39888-en.html
1- Mechanical Engineering Department, Mechanic Facultuy, North Tehran Branch, Islamic Azad University, Tehran, Iran
2- Mechanical Engineering Department, Mechanic Facultuy, Najafabad Branch, Islamic Azad University, Isfahan, Iran , p_saraeian@iau-tnb.ac.ir
Abstract:   (2625 Views)

Aluminum alloys, due to their high variety and favorable mechanical properties, are widely used in industries. Aluminum alloy 111H-5754 due to its properties such as high strength to weight ratio, ductility, toughness, and corrosion resistance, are applied in the manufacture of automotive body, offshore, and offshore oil equipment. The presence of 3% magnesium in the chemical structure of this alloy makes it susceptible to heat and therefore, it is not possible to perform most of the traditional machining processes on it. Water jet machining with abrasive particles (AWJM), because of the use of water and abrasive particles as cutting tools, can be a good method for machining these materials. In the present study, the effect of water jet and abrasive particle machining process parameters, including water jet pressure, traverse speed and loading coefficient on surface roughness, angle of striation, and burr formation in aluminum alloy 111H-5754 samples is discussed. The results showed that after traverse speed, water jet pressure and loading coefficient have the most effects on the surface quality characteristics, respectively. So, for a loading factor of 45% and a jet pressure of 300MPa, increasing the traverse speed from 200 to 300mm/min, the surface roughness value in the smooth area is about 50%, and the angle of striation of the lines in the rough area, increased by about 25%.

Full-Text [PDF 1218 kb]   (1452 Downloads)    
Article Type: Original Research | Subject: Machining
Received: 2020/01/16 | Accepted: 2020/03/31 | Published: 2020/07/20

References
1. Mackenzie DS, Totten GE. Handbook of aluminum. Florida: CRC Press; 2003. [Link]
2. Brosi JK, Lewandowski JJ. Delamination of a sensitized commercial Al-Mg alloy during fatigue crack growth. Scripta Materialia. 2010;63(8):799-802. [Link] [DOI:10.1016/j.scriptamat.2010.06.017]
3. Knight WA, Boothroyd G. Fundamentals of metal machining and machine tools. Florida: CRC Press; 2005. [Link]
4. Momber AW, Kovacevic R. Principles of abrasive water jet machining, Springer Science & Business Media. London: Springer; 2012. [Link]
5. Krajcarz D. Comparison metal water jet cutting with laser and plasma cutting. Procedia Engineering. 2014;69:838-843. [Link] [DOI:10.1016/j.proeng.2014.03.061]
6. Pervaiz S, Anwar S, Qureshi I, Ahmed N. Recent advances in the machining of titanium alloys using minimum quantity lubrication (MQL) based techniques. International Journal of Precision Engineering and Manufacturing-Green Technology. 2019;6(1):133-145. [Link] [DOI:10.1007/s40684-019-00033-4]
7. Azmir MA, Ahsan AK. Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. Journal of Materials Processing Technology. 2008;198(1-3):122-128. [Link] [DOI:10.1016/j.jmatprotec.2007.07.014]
8. Tosun N, Dagtekin I, Ozler L, Deniz A. Abrasive waterjet cutting of aluminum alloys: Workpiece surface roughness. Applied Mechanics and Materials. 2013;404:3-9. [Link] [DOI:10.4028/www.scientific.net/AMM.404.3]
9. Gnanavelbabu A, Rajkumar K, Saravanan P. Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites. Materials and Manufacturing Processes. 2018;33(12):1313-1323. [Link] [DOI:10.1080/10426914.2018.1453146]
10. Natarajan Y, Murugasen PK, Sundarajan LR, Arunachalam R. Experimental Investigation on Cryogenic Assisted Abrasive Water Jet Machining of Aluminium Alloy. International Journal of Precision Engineering and Manufacturing-Green Technology. 2019;6(3):415-432. [Link] [DOI:10.1007/s40684-019-00072-x]
11. Shakouri E, Abbasi M. Investigation of cutting quality and surface roughness in abrasive water jet machining of bone. Proceedings of the Institution of Mechanical Engineers. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2018;232(9):850-861. [Link] [DOI:10.1177/0954411918790777]
12. Khan AA, Haque MM. Performance of different abrasive materials during abrasive water jet machining of glass. Journal of Materials Processing Technology. 2007;191(1-3):404-407. [Link] [DOI:10.1016/j.jmatprotec.2007.03.071]
13. Begic-Hajdarevic D, Cekic A, Mehmedovic M, Djelmic A. Experimental study on surface roughness in abrasive water jet cutting. Procedia Engineering. 2015;100:394-399. [Link] [DOI:10.1016/j.proeng.2015.01.383]
14. Caydas U, Hascalık A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. Journal of Materials Processing Technology. 2008;202(1-3):574-582. [Link] [DOI:10.1016/j.jmatprotec.2007.10.024]
15. Shanmugam DK, Masood SH. An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. Journal of Materials Processing Technology. 2009;209(8):3887-3893. [Link] [DOI:10.1016/j.jmatprotec.2008.09.001]
16. Sasikumar K, Arulshri KP, Ponappa K, Uthayakumar M. A study on kerf characteristics of hybrid aluminium 7075 metal matrix composites machined using abrasive water jet machining technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2018;232(4):690-704. [Link] [DOI:10.1177/0954405416654085]
17. Srinivas S, Babu NR. Penetration ability of abrasive waterjets in cutting of aluminum-silicon carbide particulate metal matrix composites. Machining Science and Technology. 2012;16(3):337-354. [Link] [DOI:10.1080/10910344.2012.698935]
18. Chithirai M, Chithirai Pon Selvan M, Mohanasundararaju N, Mohanasundararaju Na. An Experimental investigation on depth of cut in abrasive waterjet cutting of aluminium. International Journal of Engineering Science and Technology (IJEST). 2011;3(4):2950-2954. [Link]
19. Ahmed TM, El Mesalamy AS, Youssef A, El Midany TT. Improving surface roughness of abrasive waterjet cutting process by using statistical modeling. CIRP Journal of Manufacturing Science and Technology. 2018;22:30-36. [Link] [DOI:10.1016/j.cirpj.2018.03.004]
20. Maneiah D, Shunmugasundaram M, Reddy AR, Begum Z. Optimization of machining parameters for surface roughness during abrasive water jet machining of aluminium/magnesium hybrid metal matrix composites. Materials Today: Proceedings. 2020 Mar:1-6. [Link] [DOI:10.1016/j.matpr.2020.02.264]
21. Mayuet Ares PF, Rodríguez-Parada L, Gómez-Parra A, Batista Ponce M. Characterization and Defect Analysis of Machined Regions in Al-SiC metal matrix composites using an abrasive water jet machining process. Applied Sciences. 2020;10(4):2-16. [Link] [DOI:10.3390/app10041512]
22. Shahu PK, Maity RS. Machining performance evaluation of Al 6061 T6 using abrasive water jet process. Advances in Unconventional Machining and Composites. 2020 Nov:127-139. [Link] [DOI:10.1007/978-981-32-9471-4_11]
23. aalco.co.uk [Internet]. Birmingham: The UK's largest independent multi-metals stockholder; 2019. [Unknown Cited]. Available from: http://www.aalco.co.uk/. [Link]
24. Chithirai Pon Selvan M, Mohana Sundara Raju N, Sachidananda HK. Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium. Frontiers of Mechanical Engineering. 2012;7(4):439-444. [Link] [DOI:10.1007/s11465-012-0337-0]
25. Verma K, Anandakrishnan V, Sathish S. Modelling and analysis of abrasive water jet machining of AA2014 alloy with Al2O3 abrasive using fuzzy logic. Materials Today: Proceedings. 2019;21(1):652-657. [Link] [DOI:10.1016/j.matpr.2019.06.733]
26. Balamurugan K, Uthayakumar M, Sankar S, Hareesh US, Warrier KGK. Abrasive waterjet cutting of lanthanum phosphate-yttria composite: a comparative approach, in: micro and nano machining of engineering materials. Basel: Springer International Publishing; 2019. pp. 101-119. [Link] [DOI:10.1007/978-3-319-99900-5_5]
27. Ay M, Caydas U, Hascalik A. Effect of traverse speed on abrasive waterjet machining of age hardened Inconel 718 nickel-based superalloy. Materials and Manufacturing Processes. 2010;25(10):1160-1165. [Link] [DOI:10.1080/10426914.2010.502953]
28. Yuvaraj N, Pradeep Kumar M. Study and evaluation of abrasive water jet cutting performance on AA5083-H32 aluminum alloy by varying the jet impingement angles with different abrasive mesh sizes. Machining Science and Technology, 2017;21(3):385-415. [Link] [DOI:10.1080/10910344.2017.1283958]
29. Dhanawade A, Kumar S. Study on carbon epoxy composite surfaces machined by abrasive water jet machining. Journal of Composite Materials. 2019;53(20):2909-2924. [Link] [DOI:10.1177/0021998318807278]
30. Xu QW, Qiang CH, Guo CW. Experimental Study on the Surface Roughness of 1060 Aluminum Alloy Cut by Abrasive Water Jet. Materials Science Forum. 2019;950:32-37. [Link] [DOI:10.4028/www.scientific.net/MSF.950.32]
31. Kumaran ST, Ko TJ, Uthayakumar M, Islam M. Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. Journal of Alloys and Compounds. 2017;724:1037-1045. [Link] [DOI:10.1016/j.jallcom.2017.07.108]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.