Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1815-1828 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dinarvand S, Jabbaripour B. Effect of Tool Material on Metal Removal Efficiency, Surface Integrity, and Electrochemical Corrosion Resistance in EDM of Gamma Titanium Aluminide Alloy. Modares Mechanical Engineering 2020; 20 (7) :1815-1828
URL: http://mme.modares.ac.ir/article-15-40055-en.html
1- Assistant Professor, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University , sae.dinarvand@iauctb.ac.ir
2- Assistant professor, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University
Abstract:   (2652 Views)
Modern intermetallic compound of gamma titanium aluminide (γ-TiAl) due to its low density, high elastic modulus, high resistance to oxidation, corrosion, and ignition has recently been considered in the aerospace and automotive industries. Traditional machining of this alloy is so difficult. In the current study, electrical discharge machining of γ-TiAl samples is investigated using different tool electrodes of graphite, copper, and aluminum. The results show that when using aluminum electrodes, tool wear rate is averagely 3.2 times more than copper and 5.8 times more than graphite tools. In addition, when using graphite electrodes, the average material removal rate is 4.2 times more than copper and 7.7 times more than aluminum. Machining by aluminum tool leads to formation of Al2O3 and TiO2 oxide compounds on the work surface but in machining by graphite electrode, TiC and Ti8C5 carbide phases are created on the work surface. In machining by graphite due to formation of hard carbide compounds in the recast layer, the microhardness is higher than the machined sample by the aluminum tool, where oxide compounds exist on the surface and the hardness of recast layer in the machined sample by copper electrode is less than the other two electrodes, because of existing phases such as copper oxide with less hardness. The highest electrochemical corrosion resistance belongs to the machined specimen using graphite tool and the lowest corrosion resistance is related to the machined sample by aluminum electrode. Reducing oxide and aluminum compounds and increasing carbide phases enhance the corrosion resistance of γ-TiAl machined samples.
Full-Text [PDF 1985 kb]   (1465 Downloads)    
Article Type: Original Research | Subject: Machining
Received: 2020/01/21 | Accepted: 2020/04/8 | Published: 2020/07/20

References
1. Bernd M. After 60 years of EDM the discharge process remains still disputed. Journal of Materials Processing Technology. 2004;149(1-3):376-381. [Link] [DOI:10.1016/j.jmatprotec.2003.11.060]
2. Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications. Weinheim: Wiley-VCH; 2003. [Link] [DOI:10.1002/3527602119]
3. Lütjering G, Williams JC. Titanium. 2nd Edition. Heidelberg: Springer; 2007. [Link]
4. Weinert K, Bergmann S, Kempmann C. Machining sequence to manufacture a γ-TiAl-Conrod for application in combustion engines. Advanced Engineering Materials. 2006;1:1-8. [Link] [DOI:10.1002/adem.200500200]
5. Sarkar S, Mitra S, Bhattacharyya B. Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. Journal of Materials Processing Technology. 2005;159(3):286-294. [Link] [DOI:10.1016/j.jmatprotec.2004.10.009]
6. Sarkar S, Mitra S, Bhattacharyya B. Parametric optimisation of wire electrical discharge machining of γ-titanium aluminide alloy through an artificial neural network model. International Journal of Advanced Manufacturing Technology. 2006;27:501-508. [Link] [DOI:10.1007/s00170-004-2203-7]
7. Sarkar S, Sekh M, Mitra S, Bhattacharyya B. Modeling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. Journal of Materials Processing Technology. 2008;205(1-3):376-387. [Link] [DOI:10.1016/j.jmatprotec.2007.11.194]
8. Aspinwall DK, Dewes RC, Mantle AL. The Machining of γ-TiAl Intermetallic alloys. CIRP Annals. 2005;54(1):99-104. [Link] [DOI:10.1016/S0007-8506(07)60059-6]
9. Hood R, Aspinwall DK, Sage C, Voice W. High speed ball nose end milling of γ-TiAl alloys. Journal of Intermetallics. 2013;32:284-291. [Link] [DOI:10.1016/j.intermet.2012.09.011]
10. Beranoagirre A, Olvera D, López de Lacalle LN. Milling of gamma titanium-aluminum alloys. International Journal of Advanced Manufacturing Technology. 2012;62:83-88. [Link] [DOI:10.1007/s00170-011-3812-6]
11. Klocke F, Lung D, Arft M, Priarone PC, Settineri L. On high-speed turning of a third-generation gamma titanium aluminide. International Journal of Advanced Manufacturing Technology. 2011;63:1-9. [Link] [DOI:10.1007/s00170-012-4157-5]
12. Jabbaripour B, Sadeghi MH, Shabgard MR, Shajari SH, Hasanpour H. Investigating the effects of powder mixed electrical discharge machining on the surface quality of γ-TiAl intermetallic. Advanced Materials Research. 2012;488:396-401. [Link] [DOI:10.4028/www.scientific.net/AMR.488-489.396]
13. Jabbaripour B, Sadeghi MH, Shabgard MR, Faridvand Sh. Investigating the effects of tool materials on the properties of electrical discharge machining of γ-TiAl intermetallic. Modares Mechanical Engineering. 2011;11(2):135-146. [Link]
14. Jabbaripour B, Sadeghi MH, Shabgard MR, Faraji H. Investigating output characteristics in powder mixed electrical discharge machining of γ-TiAl intermetallic. Modares Mechanical Engineering. 2013;12(5):74-86. [Link]
15. Jabbaripour B, Motallebpouralishahi M. Experimental study of material removal rate, surface roughness and topography in electrical discharge machining of Titanium Aluminide intermetallic compound. Iranian Journal of Manufacturing Engineering. 2016;3(3):29-39. [Link]
16. Jabbaripour B, Motallebpouralishahi M. The comparison of output characteristics in electrical discharge machining and aluminum powder mixed EDM processes on Titanium Aluminide intermetallic compound. Iranian Journal of Manufacturing Engineering. 2017;4(1):25-37. [Link]
17. Jabbaripour B, Motallebpouralishahi M. Experimental investigation of metal removal efficiency and machined surface texture in EDM of titanium aluminide compound. Modares Mechanical Engineering. 2018;17(12):47-55. [Link]
18. Jabbaripour B, Sadeghi MH, Shabgard MR, Faraji H. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. Journal of Manufacturing Processes. 2013;15(1):56-68. [Link] [DOI:10.1016/j.jmapro.2012.09.016]
19. Kung K, Horng J, Chiang K. Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. International Journal of Advanced Manufacturing Technology. 2009:40:95-104. [Link] [DOI:10.1007/s00170-007-1307-2]
20. Hasclik A, Caydas U. Electrical discharge machining of titanium alloy (Ti-6Al-4V). Journal of Applied Surface Science. 2007;253(22):9007-9016. [Link] [DOI:10.1016/j.apsusc.2007.05.031]
21. Yan BH, Tsai HC, Huang FY. The effect in EDM of a dielectric of urea solution in water on modifying the surface of titanium. Journal of Machine Tools and Manufacture. 2005;45(2):194-200. [Link] [DOI:10.1016/j.ijmachtools.2004.07.006]
22. Davim JP. Surface integrity in machining. London: Springer; 2010. [Link] [DOI:10.1007/978-1-84882-874-2]
23. Lide DR. CRC Handbook of chemistry and physics. 90th Edition. New York; Francis and Taylor group; 2010. [Link]
24. Fontana MG. Corrosion engineering. New York: McGraw-Hill; 1986. [Link]
25. Ningshen S, Mudali UK, Mukherjee P. Oxygen ion irradiation effect on corrosion behavior of titanium in nitric acid medium. Journal of Nuclear Materials. 2011;408(1):1-6. [Link] [DOI:10.1016/j.jnucmat.2010.10.015]
26. Orazem ME, Tribollet B. Electrical circuits in electrochemical impedance spectroscopy. New York: John Wiley & Sons; 2008. [Link] [DOI:10.1002/9780470381588]
27. Orazem ME, Tribollet B. Electrochemical Impedance Spectroscopy. New York: John Wiley & Sons; 2008. [Link] [DOI:10.1002/9780470381588]
28. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: John Wiley & Sons; 2001. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.