Aeroelastic response of horizontal-axis wind turbine in sudden wind gusts based on Unsteady Blade Element-Momentum method

Abbas Ebrahimi¹, Mahmood Sekandari

Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
¹ P.O.B. 11155-1639, Tehran, Iran, ebrahimi_a@sharif.ir

ABSTRACT

Wind turbines are subject to various unsteady aerodynamic effects. This includes the wind gust and the change of wind direction. In this work, the aeroelastic behavior of a reference horizontal axis wind turbine has been investigated under different wind gusts and yaw conditions. Unsteady blade element momentum (UBEM) theory and Euler-Bernoulli beam assumption were used for rotor power estimations. To take into account the time delay in aerodynamic loads due to a sudden change in inflow conditions, a dynamic wake model was implemented. The ONERA dynamic stall model was coupled into the BEM theory to improve the aerodynamic loads prediction in the unsteady inflow and yaw conditions. To verify this method, the results in the case of steady-state were compared with the NREL reference wind turbine and in the unsteady case are compared with the Tjaereborg test turbine. The results indicate that sudden change in wind speed causes sharp fluctuations in terms of elastic torsion of the blade and other parameters such as rotor power. Increase in wind gradient can lead to increasing time delay to a new equilibrium. The increase in yaw angle can be contributed to the rotor power and the reduction in periodic loads. The method presented here may facilitate improvements in the controller design for wind turbines.

Keywords:
- Blade element momentum
- Unsteady aerodynamics
- Stall dynamic
- Aeroelasticity
- Wind turbine

Please cite this article using:

روی یک با فشار اینکه خواص جریان روی مقطع برش بر فاصله کاری ایجاد می‌شود. در این فضای برای سطح دیده می‌شود و به دنبال تکرار ایجاد می‌شود.

نمودار 1: نمودار سرعت برای سطح برش

\[V_0 = \frac{1}{4} \sin^2 \phi + \frac{1}{2} \tan \psi \]

\[\alpha = \frac{F}{2 \pi \cos^2 \frac{R}{2 \sin \phi}} \]

نمودار 2: نمودار سرعت بر روی سطح برش

\[F = 2 \pi \cos^{-1} \left(\exp \left(- \frac{N \cdot R}{2 \sin \phi} \right) \right) \]

\[\sigma = \frac{N}{2 \pi r} \]

\[R = R_{0} + \alpha \]

\[V_{rel} = a \tan \theta \]

\[W_1 = a \tan \theta \]

NREL

1. Prandtl's tip-loss factor
2. Dynamic inflow
3. Dynamic stall
4. ONERA dynamic stall model
Table 1 ONERA stall dynamic coefficient

| \(
<table>
<thead>
<tr>
<th>\lambda_0</th>
<th>s_1</th>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>s_2</th>
<th>r_0</th>
<th>r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>2</td>
<td>0.3</td>
<td>0.02</td>
<td>0.3</td>
<td>0.02</td>
<td>0.17</td>
<td>0.02</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Stall-controlled wind turbines

Pitch-controlled wind turbines

\[a = \frac{1}{2} \left(K + 2 - 2a_0 \right) \frac{2}{K(1 - 2a_0)} + 2 - 4(Ka_0^2 - 1) \]

\[K = \frac{AF \sin^2 \phi}{\sigma(C_{\text{stat}} \cos \phi + C_{\text{st}} \sin \phi)} \]
\[C_{l_2}^{n+1} = \left[1 + \frac{\Delta s^2}{a_2 n} \right]^{-1} \left[C_{l_2}^n - \frac{\Delta s^2}{a_2 n} C_{l_2}^n \right] \]

(21)

In Equation (22), \(R \) is the dynamic stall model coefficient.

\[R = \frac{\lambda C_{l_{\text{pot}}} + (\lambda C_{l_{\text{r}}}) \alpha + \lambda C_{l_{\text{a}}}}{\alpha} \]

(22)

The dynamic stall model coefficient is a function of the local angle of attack,
\(\alpha \), and the local elastic pitching,
\(\alpha' \), of the blade element.

\[M_{\text{dyn}} = \frac{d}{dx} \left(G \frac{d\theta_{\text{elastic}}}{dx} \right) \]

(23)

In Equation (23), \(\theta_{\text{elastic}} \) is the elastic pitching of the blade element.

Fig. 2 Wind turbine at yaw condition

Fig. 3 Solving flowchart

5. **Summary**

The dynamic stall model is used to compute local loads on the blade element and report whether the blade element is in a stall condition.

\[^1\] Tjaereborg
توضیحات و بررسی توربین‌های شریف خود را تجربه می‌کنند که در آن افزایش ضریب الفا محوری موجب کاهش سرعت باد در راستای محور روتور شده و راهی‌های جمله را در مقاطع برای کاهش می‌دهند. بنابراین به تدریج به‌دست اوردوهای کاهشی پایه و نوای خروجی روي 6 مگاواتی می‌شود. پدیده مشابه پس از کاهش ناگهانی سرعت باد 12 به 10 متر بر ثانیه از دینامیکی شده در این حال نیز سپر از کاهش ناگهانی برخی اوردوهایی، نوای خروجی ایجاد ناگهانی سپس 4 مگاواتی کاهش ییدا کرده و سپس طی حدود 0.4 ثانیه به مقادر پایان 3 مگاواتی می‌رسد.

6-2 بررسی عملکرد توربین در شرایط ناگهانی سرعت باد با کمک الگو و اندکی دینامیکی

در بعضی از اوردوهای اینستیتیو استفاده شده یا برای اوردوهای دینامیکی مشابه می‌شود. در این شرایط ناگهانی، سرعت باد می‌تواند به حدود 6-2 بررسی عملکرد توربین در شرایط ناگهانی سرعت باد با کمک الگو و اندکی دینامیکی

در بعضی از اوردوهای اینستیتیو استفاده شده یا برای اوردوهای دینامیکی مشابه می‌شود. در این شرایط ناگهانی، سرعت باد می‌تواند به حدود 6-2 بررسی عملکرد توربین در شرایط ناگهانی سرعت باد با کمک الگو و اندکی دینامیکی

در بعضی از اوردوهای اینستیتیو استفاده شده یا برای اوردوهای دینامیکی مشابه می‌شود. در این شرایط ناگهانی، سرعت باد می‌تواند به حدود 6-2 بررسی عملکرد توربین در شرایط ناگهانی سرعت باد با کمک الگو و اندکی دینامیکی

در بعضی از اوردوهای اینستیتیو استفاده شده یا برای اوردوهای دینامیکی مشابه می‌شود. در این شرایط ناگهانی، سرعت باد می‌تواند به حدود 6-2 بررسی عملکرد توربین در شرایط ناگهانی سرعت باد با کمک الگو و اندکی دینامیکی

در بعضی از اوردوهای اینستیتیو استفاده شده یا برای اوردوهای دینامیکی مشابه می‌شود. در این شرایط ناگهانی، سرعت باد می‌تواند به حدود
برای بررسی اثر ضرایب آرودینامیکی در شرایط واندگی دیمانکی از نتایج
سیتی 11 نواد خروجی توربین را برای 10 سرعت بای سرعت 8 اسقفنده شده است. سرعت چرخش باد در این مورد در دقهای نرمال گرفته شده است. شکل 9 نوادت پیچش استیکی تراکم
برد و نواد توربین را در این شرایط، طی دهانه نشان می‌دهد نتایج حاکی از آن است که وجود این ضرایب مهمی در نوادت پیچش استیکی تراکم وجود دارد.

شکل 10 نوادت پیچش استیکی تراکم در این شرایط با پیچش استیکی تراکم نشان می‌دهد. سرعت باد در ده سرعت بای برای 10 سرعت بای نشان داده است. سرعت باد با پیچش استیکی تراکم نشان می‌دهد. سرعت باد در ده سرعت بای برای 10 سرعت بای نشان داده است.

شکل 11 نوادت پیچش استیکی تراکم در این شرایط با پیچش استیکی تراکم نشان می‌دهد. سرعت باد در ده سرعت بای برای 10 سرعت بای نشان داده است.

182
Fig. 14 Velocity diagram for a rotor blade section in yaw condition

Fig. 14 Velocity diagram for a rotor blade section in yaw condition

Fig. 12 Yaw effect on wind turbine power in steady condition

Fig. 12 Yaw effect on wind turbine power in steady condition

Fig. 13 Yaw effect on wind turbine power in steady condition

Fig. 13 Yaw effect on wind turbine power in steady condition

Fig. 12 Yaw effect on wind turbine power in steady condition

Fig. 13 Yaw effect on wind turbine power in steady condition

