دوره 22، شماره 9 - ( شهریور 1401 )                   جلد 22 شماره 9 صفحات 590-579 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

jafari S, Alavi Nia َ. Experimental Study of the Effect of Different Factors on the Performance of the Gas Gun Device and Numerical Study of the Rupture Pressure Estimate in the Rupture Disk. Modares Mechanical Engineering 2022; 22 (9) :579-590
URL: http://mme.modares.ac.ir/article-15-60348-fa.html
جعفری سامان، علوی نیا علی. بررسی آزمایشگاهی اثر عوامل مختلف در عملکرد دستگاه تفنگ‌گازی و بررسی عددی تخمین فشار پارگی در دیسک فداشونده. مهندسی مکانیک مدرس. 1401; 22 (9) :579-590

URL: http://mme.modares.ac.ir/article-15-60348-fa.html


1- دانشجوی دکتری دانشکده مهندسی دانشگاه بوعلی سینا همدان
2- استاد گروه مکانیک دانشگاه بوعلی سینا همدان ، alavi495@basu.ac.ir
چکیده:   (1082 مشاهده)
هدف این پژوهش، بررسی عوامل موثر بر افزایش سرعت خروجی پرتابه در دستگاه تفنگ­ گازی می­باشد. در بخش اول، اثر عوامل مختلف مانند شکل سابوت، ابعاد سابوت، عمق شیار دیسک و هندسه قطعه نگهدارنده­ دیسک فداشونده، مسیر حرکت پرتابه از لحظه شروع حرکت تا خروج از دهانه­ لوله و نوع گاز مورد استفاده برای شلیک، بر سرعت خروجی پرتابه مورد بررسی قرار گرفته­است. در هر مرحله از آزمایش­ها یک عامل مورد توجه بوده و تاثیر آن در بهبود عملکرد دستگاه تفنگ گازی بررسی شده است. بر اساس نتایج حاصل از بررسی عوامل موثر بر سرعت خروجی پرتابه، هندسه جدید سابوت و صاف و بدون انحنا بودن لوله دستگاه (مسیر حرکت پرتابه) به ­ترتیب، با 12/24 و 81/20 درصد افزایش در سرعت پرتابه بیشترین و نوع گاز مورد استفاده برای شلیک با 99/2 درصد افزایش در سرعت پرتابه کمترین اثر را در عملکرد دستگاه تفنگ ­گازی داشتند. در بخش دوم پژوهش حاضر با استفاده از نرم افزار LS-Dyna فشار مورد نیاز و نحوه پارگی دیسک فداشونده در عمق شیارهای مختلف بررسی و با نتایج تجربی مقایسه شدند. شکل پارگی و فشار لازم برای پارگی دیسک فداشونده حاصل از روش عددی با نتایج آزمایشگاهی مطابقت خوبی دارد.

 
متن کامل [PDF 1193 kb]   (455 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: مکانیک ضربه
دریافت: 1400/12/28 | پذیرش: 1401/2/24 | انتشار: 1401/6/10

فهرست منابع
1. [1]-Hill R. The Mathematical Theory of Plasticity. Chapter 12, Oxford University Press, New York.:1950.
2. [2]-Henderson RW. An Analytical Method for the Design of Scored Rupture Diaphragms for Use in Shock and Gun Tunnels. John Hopkins Univ. Applied Physics Laboratory, Technical memorandum, Maryland: 1967. [DOI:10.21236/AD0675290]
3. [3]-Wang NM, Shammamy MR. On The Plastic Bulging of a Circular Diaphragm by Hydrostatic Pressure. Journal of the Mechanics and Physics of Solids. 1696;17(1): 43-61. [DOI:10.1016/0022-5096(69)90012-X]
4. [4]-Malakhov NN, Kosolapov AI, Ol'khovskii NE. Maximum Bursting Pressure of Rupture Disks. Chemical and Petroleum Engineering. 1970; 6(12):1048-1050. [DOI:10.1007/BF01151642]
5. [5]-Stepanov AP. Rupture Disks. Chemical and Petroleum Engineering.1976; 12(4):386-387. [DOI:10.1007/BF01161331]
6. [6]-Ilahi MF, Parmar A, Mellor PB. Hydrostatic Bulging of a Circular Aluminum Diaphragm. Journal of the Mechanics and Physics of Solids. 1981; 23(4):221-227. [DOI:10.1016/0020-7403(81)90047-3]
7. [7]-Ilahi MF. Parmar A, Mellor PB. Hydrostatic Bulging of a Circular Soft Brass Diaphragm, International Journal of Mechanical Sciences. 1985; 27(5):275-280. [DOI:10.1016/0020-7403(85)90017-7]
8. [8]-Murty DVR. Finite Element Analysis of Rupture Disc. Scientist E I, Design & Engineering Division, Indian Institute of Chemical Technology, India, Tarnaka, 2006.
9. [9]-Tretjakovas J, Kacianauskas, Simkevicius C. FE Simulation of Rupture of Diaphragm with Initiated Defect. Vilnius Gediminas Technical University. 2006; 62(6).
10. [10]-Dryer FL, Chaos M, Zhao Z, Stein JN, Alpert JY, Homer CJ. Spontaneous Ignition of Pressurized Release of Hydrogen and Natural Gas into Air. Combustion Science and Technology. 2007; 179:663e94. [DOI:10.1080/00102200600713583]
11. [11]-Cherouat A, Ayadi M, Mezghani N, Slimani F. Experimental and Finite Element Modelling of Thin Sheet Hydroforming Processes. International Journal of Material Forming. 2008; 1(1):313-316. [DOI:10.1007/s12289-008-0339-y]
12. ]12[- خدارحمی ح و واحدی خ و لطفی ح، تحلیل تجربی و عددی اثر عمق شیار و تخمین فشار پارگی در دیافراگم های پاره شونده، مکانیک هوا فضا، 1391، دوره 8، شماره 1، صفحه 85 تا 98.
13. [13]-Javidrad F. And Rahmati, R. An Integrated Re- Engineering Plan for the Manufacturing of Aerospace Components. Materials and Design. 2009; 30(5):1524-1532. [DOI:10.1016/j.matdes.2008.07.055]
14. [14]-Miller D. Getting the Most Out of Your Rupture Disc. Chemical Engineering. 2009; 116(3):45-47.
15. [15]-Gao GF, Wang GD, Ding XW, Chen JJ, Limit Pressure of Rupture Discs Found on Tensile Instability Condition. Advanced Material Research. 2010; 97(101):296-300. [DOI:10.4028/www.scientific.net/AMR.97-101.296]
16. [16]-Jeong JY, Lee J, Yeom S, Choi W, Kim TG, Hong SC, Ryu M, Kim H, Lee SB. A Study on The Grooving Process of a Cross-Scored Rupture Disc. International Journal of Precision Engineering and Manufacturing. 2012; 13(2):219-227. [DOI:10.1007/s12541-012-0027-1]
17. [17]-Jeong JY, Jo W, Kim H, Baek SH, Lee SB. Structural Analysis on The Superficial Grooving Stainless-Steel Thin-Plate Rupture Discs. International Journal of Precision Engineering and Manufacturing.2014;15(6):1035-1040. [DOI:10.1007/s12541-014-0433-7]
18. [18]-Yan ZF. Numerical Study on Explosion Performance and Influential Factors of the Metallic Rupture Discs. Dalian University of Technology. 2012; 45-51.
19. [19]-Duan Q, Xiao H, Gao W, Gong L, Wang Q, Sun J. Experimental Study on Spontaneous Ignition and Flame Propagation of High-Pressure Hydrogen Release Via a Tube into Air. Fuel. 2016; 181:811e9. [DOI:10.1016/j.fuel.2016.05.066]
20. [20]-Ando T, Asahara M, Saburi T, Kubota S, Miyasaka T. Propagation Behavior of Self-Ignited Flame on High-Pressure Hydrogen Flow in A Tube. Proceedings of the twelfth international symposium on hazards, prevention and mitigation of industrial explosions. 2018:1-10.
21. [21]-Xiangwei K. Experimental and Finite Element Optimization Analysis on Hydroforming Process of Rupture Disk. Procedia Manufacturing. 2018; 15:892-898 [DOI:10.1016/j.promfg.2018.07.408]
22. [22]-Makoto A, Tei S, Toshiki A, Yoshiaki T, Takeshi M, Shiro K. Self-Ignited Flame Behavior of High-Pressure Hydrogen Release by Rupture Disk through a Long Tube. International Journal of Hydrogen Energy. (2021); 46:13484-13500. [DOI:10.1016/j.ijhydene.2021.01.097]
23. [23]- Zhu H, Xu W, Luo Z, Zheng H. Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc. Metals. 2020; 10(2):232. [DOI:10.3390/met10020232]
24. [24]- Mohebbi M, Panahizadeh V, Hoseinpour Gollo M. Investigating the effect of nonlinear strain path on the mechanical properties of sheet metal to predict burst pressure of composite Rupture disc. Iranian Journal of Manufacturing Engineering. (2021); 8(4):1- 11.
25. [25]-ASTM-E1251. Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry. (2017).
26. [26]-LS-DYNA Keyword User's Manual, In Version 971, Livemore Software Technology Corporation (LSTC), California, USA, 2007.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.