Volume 22, Issue 11 (November 2022)                   Modares Mechanical Engineering 2022, 22(11): 657-668 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khademy M, Saraei A, Abyaneh J. Performance of Concentrating Photovoltaic-Thermal Solar Collectors for Cooling, Heating, and Power Generation System of an Industrial Complex. Modares Mechanical Engineering 2022; 22 (11) :657-668
URL: http://mme.modares.ac.ir/article-15-61724-en.html
1- Department of Mechanical Engineering, South Tehran Branch, University of Islamic Azad University, Tehran, Iran
2- Department of Mechanical Engineering, South Tehran Branch, University of Islamic Azad University, Tehran, Iran , a_Saraei@azad.ac.ir
Abstract:   (1112 Views)
The energy used to provide cooling and heating is a significant part of the energy consumption of an industrial complex. This paper aims to evaluate the performance of a trigeneration solar-powered system to supply the air conditioning system of an industrial complex energy requirement. The proposed design includes a double-effect lithium bromide water absorption chiller, a heat pump, and concentrating photovoltaic-thermal solar collectors (CPVT). Absorption chillers with nominal capacity and coefficient of performance of 100 TR and 1.3, respectively, and a heat pump with a capacity of 30 TR have been used to meet the cooling demands. The solar system consists of linear Fresnel solar concentrators and triple-junction solar cells. The analysis has been conducted for the complex located southwest of Tehran, Iran. Dynamic system simulation is performed using TRNSYS and EES software. To compare the performance of the proposed collector, photovoltaic-thermal collectors without concentrators (PVT) and Thermal collectors with concentrators (CT) with the same coating surface have been investigated. The energy delivered by the proposed collector is 64% and 28% higher, respectively than the PVT and the CT collectors. Compared to a structure without solar energy utilization unit, the proposed design reduces energy consumption by 62%. Employment of the heat pump in this method reduces energy consumption by 58% compared system without it. The proposed collector electrical energy production in a year is 101.10 MWh. The proposed system needs 264.07 MWh of backup heating a year to meet all the complex air conditioning needs.
 
Full-Text [PDF 997 kb]   (373 Downloads)    
Article Type: Original Research | Subject: Thermal Power Plant
Received: 2022/05/22 | Accepted: 2022/07/26 | Published: 2022/11/1

References
1. [1]. Panwar NL, Kaushik SC, Kothari S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renewable and Sustainable Energy Reviews. 2011;15(3):1513-24. [DOI:10.1016/j.rser.2010.11.037]
2. [2]. Eisenberg R, Nocera DG. Preface:  Overview of the Forum on Solar and Renewable Energy. Inorganic Chemistry. 2005;44(20):6799-801. [DOI:10.1021/ic058006i]
3. [3]. Chaibi Y, El Rhafiki T, Simón-Allué R, Guedea I, Luaces SC, Gajate OC, et al. Air-based Hybrid Photovoltaic/Thermal Systems: A review. Journal of Cleaner Production. 2021;295:126211. [DOI:10.1016/j.jclepro.2021.126211]
4. [4]. Kong X, Zhang L, Xu W, Li H, Kang Y, Wu J, et al. Performance Comparative Study of a Concentrating Photovoltaic/Thermal Phase Change System with Different Heatsinks. Applied Thermal Engineering. 2022;208:118223. [DOI:10.1016/j.applthermaleng.2022.118223]
5. [5]. Khouya A. Performance Analysis and Optimization of a Trilateral Organic Rankine Powered by a Concentrated Photovoltaic Thermal System. Energy. 2022;247:123439. [DOI:10.1016/j.energy.2022.123439]
6. [6]. Chandan, Baig H, ali Tahir A, Reddy KS, Mallick TK, Pesala B. Performance Improvement of a Desiccant Based Cooling System by Mitigation of Non-uniform Illumination on the Coupled Low Concentrating Photovoltaic Thermal Units. Energy Conversion and Management. 2022;257:115438. [DOI:10.1016/j.enconman.2022.115438]
7. [7]. Shoeibi S, Kargarsharifabad H, Mirjalily SAA, Zargarazad M. Performance Analysis of Finned Photovoltaic/Thermal Solar Air Dryer with Using a Compound Parabolic Concentrator. Applied Energy. 2021;304:117778. [DOI:10.1016/j.apenergy.2021.117778]
8. [8]. Liu Y, Zhang H, Chen H. Experimental Study of an Indirect-Expansion Heat Pump System Based on Solar Low-concentrating Photovoltaic/Thermal Collectors. Renewable Energy. 2020;157:718-30. [DOI:10.1016/j.renene.2020.05.090]
9. [9]. Chen H, Li Z, Xu Y. Evaluation and Comparison of Solar Trigeneration Systems Based on Photovoltaic Thermal Collectors for Subtropical Climates. Energy Conversion and Management. 2019;199:111959. [DOI:10.1016/j.enconman.2019.111959]
10. [10]. Leonforte F, Miglioli A, Del Pero C, Aste N, Cristiani N, Croci L, et al. Design and Performance Monitoring of a Novel Photovoltaic-thermal Solar-assisted Heat Pump System for Residential Applications. Applied Thermal Engineering. 2022;210:118304. [DOI:10.1016/j.applthermaleng.2022.118304]
11. [11]. Deymi-Dashtebayaz M, Rezapour M, Farahnak M. Modeling of a Novel Nanofluid-based Concentrated Photovoltaic Thermal System Coupled with a Heat Pump Cycle (CPVT-HP). Applied Thermal Engineering. 2022;201:117765. [DOI:10.1016/j.applthermaleng.2021.117765]
12. [12]. Calise F, Cappiello FL, Dentice d'Accadia M, Vicidomini M. Thermo-economic Optimization of a Novel Hybrid Renewable Trigeneration Plant. Renewable Energy. 2021;175:532-49. [DOI:10.1016/j.renene.2021.04.069]
13. [13]. Arabkoohsar A, Sadi M. Technical Comparison of Different Solar-powered Absorption Chiller Designs for Co-supply of Heat and Cold Networks. Energy Conversion and Management. 2020;206:112343. [DOI:10.1016/j.enconman.2019.112343]
14. [14]. Grena R, Tarquini P. Solar Linear Fresnel Collector Using Molten Nitrates as Heat Transfer Fluid. Energy. 2011;36(2):1048-56. [DOI:10.1016/j.energy.2010.12.003]
15. [15]. Helmers H, Schachtner M, Bett AW. Influence of Temperature and Irradiance on Triple-junction Solar Subcells. Solar Energy Materials and Solar Cells. 2013;116:144-52. [DOI:10.1016/j.solmat.2013.03.039]
16. [16]. Chahartaghi M, Golmohammadi H, Shojaei AF. Performance Analysis and Optimization of New Double Effect Lithium Bromide-water Absorption Chiller with Series and Parallel Flows. International Journal of Refrigeration. 2019;97:73-87. [DOI:10.1016/j.ijrefrig.2018.08.011]
17. [17]. viunahvac. viunahvac catalog. 1400.
18. [18]. Dahash A, Ochs F, Janetti MB, Streicher W. Advances in Seasonal Thermal Energy Storage for Solar District Heating Applications: A Critical Review on Large-scale Hot-water Tank and Pit Thermal Energy Storage Systems. Applied Energy. 2019;239:296-315. [DOI:10.1016/j.apenergy.2019.01.189]
19. [19]. Cengel YA, Boles MA, Kanoğlu M. Thermodynamics: an Engineering Approach: McGraw-hill New York; 2011.
20. [20]. Sun J, Liu Q, Duan Y. Effects of Evaporator Pinch Point Temperature Difference on Thermo-economic Performance of Geothermal Organic Rankine Cycle Systems. Geothermics. 2018;75:249-58. [DOI:10.1016/j.geothermics.2018.06.001]
21. [21]. Corporation S. Saravel Corporation catalog. 2020.
22. [22]. Bonaros V, Gelegenis J, Harris D, Giannakidis G, Zervas K. ANALYSIS OF THE ENERGY AND COST SAVINGS CAUSED BY USING CONDENSING BOILERS FOR HEATING DWELLINGS IN GREECE2013.
23. [23]. Jayamaha L. Energy-Efficient Building Systems: Green Strategies for Operation and Maintenance: Green Strategies for Operation and Maintenance: McGraw Hill Professional; 2006.
24. [24]. University of W-M, Solar Energy L, Klein SA. TRNSYS, a Transient System Simulation Program. Madison, Wis.: Solar Energy Laborataory, University of Wisconsin--Madison; 1979.
25. [25]. Bellos E, Tzivanidis C. Development of Analytical Expressions for the Incident Angle Modifiers of a Linear Fresnel Reflector. Solar Energy. 2018;173:769-79. [DOI:10.1016/j.solener.2018.08.019]
26. [26]. Xu GP, Dai YQ, Tou KW, Tso CP. Theoretical Analysis and Optimization of a Double-effect Series-flow-type Absorption Chiller. Applied Thermal Engineering. 1996;16(12):975-87. [DOI:10.1016/1359-4311(96)00011-7]
27. [27]. Shrivastava RL, Vinod K, Untawale SP. Modeling and Simulation of Solar Water Heater: A TRNSYS Perspective. Renewable and Sustainable Energy Reviews. 2017;67:126-43. [DOI:10.1016/j.rser.2016.09.005]
28. [28]. Eriksen VL. Heat Recovery Steam Generator Technology: Woodhead Publishing; 2017.
29. [29]. James RW, Welch TC. Chapter 9 - Refrigeration and Heat-Pump Systems. In: Legg R, editor. Air Conditioning System Design: Butterworth-Heinemann; 2017. p. 167-89. [DOI:10.1016/B978-0-08-101123-2.00009-1]
30. [30]. Khodakarami J, Knight I, Nasrollahi N. Reducing the Demands of Heating and Cooling in Iranian hospitals. Renewable Energy. 2009;34(4):1162-8. [DOI:10.1016/j.renene.2008.06.023]
31. [31]. del Amo Sancho A. Solar Trigeneration: A Transitory Simulation of HVAC Systems Using Different Typologies of Hybrid Panels. Journal of Sustainable Development of Energy, Water and Environment Systems. 2014;2(1):1-14. [DOI:10.13044/j.sdewes.2014.02.0001]
32. [32]. Yin H, Qu M, Archer DH. Model Based Experimental Performance Analysis of a Microscale LiBr-H2O Steam-driven Double-effect Absorption Chiller. Applied Thermal Engineering. 2010;30(13):1741-50. [DOI:10.1016/j.applthermaleng.2010.04.004]
33. [33]. Hosoz M, Direk M. Performance Evaluation of an Integrated Automotive Air Conditioning and Heat Pump System. Energy Conversion and Management. 2006;47(5):545-59. [DOI:10.1016/j.enconman.2005.05.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.