سطح ابر آب گریز استخکام بالا با استفاده از پلی ترافلورووولین، ذرات میکرومتري آلومنیوم و نانو ذرات اکسید سیلیسیم

نوروز محمد نوری1، محمدرضا نیکدل و یکچی2

1- اساتید شرکت صنایع مهندسی مکانیک، دانشگاه علم صنعت ایران، تهران
2- دانشجوی دکتری، مهندسی مکانیک، دانشگاه علم صنعت ایران، تهران

* تهران: مدیونی پی 11141684813114

Article Information

Original Research Paper
Received 04 July 2015
Accepted 12 September 2015
Available Online 26 September 2015

Keywords:
Superhydrophobic
Hierarchical Roughness
Surface Energy
Polymer Coating
Hydrophobic Nano Material

Abstract

In recent years, many studies have been done to fabricate superhydrophobic surfaces. These surfaces have slip condition which cause self-cleaning property and also drag reduction. The hierarchical micro/nanostructures which are coated with a low surface energy material are needed to fabricate high static contact angle superhydrophobic surfaces. In order to have thermal stability, chemical resistance and low surface energy Polytetrafluoroethylene (Teflon) is used in this research. To produce the superhydrophobic surface, an appropriate layer of Teflon is coated on the aluminum substrate and the micron sized aluminum particles are deposited on the Teflon layer by fluidizing method. Then to reduce surface energy, the second Teflon layer is sprayed on the top of the aluminum particles. At the end, using sprayed method the hydrophobic nanoparticles of silica are deposited on the surface as a final hydrophobic layer. The effect of Teflon thickness, size of micro-particles and addition of hydrophobic nano-particles are investigated. The scanning electron microscopy (SEM) images of the cured surfaces show that application of micro-particles prevents the surface from being smooth after curing, creates appropriate micro-scale cracks compared to smooth Teflon surfaces. The creation of these micro-structures lead to increasing static contact angle and decreasing dynamic angle of surfaces. By modifying the surface structures with aluminum micro-particles, Teflon layer coat and subsequent deposition of hydrophobic silica nano-particles, static contact angle of 165±3° and dynamic angle of less than 7 degrees are achieved.

*x@iust.ac.ir

Robust superhydrophobic surface with polytetrafluoroethylene (ptfe), micro sized aluminum particles and sio2 nano-particles

Nowrouz Mohammad Nouri1, Mohammad Saadat-Bakhsh, Ramin Bagheri

Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

* P.O.B. 1684613114 Tehran, Iran, mnouri@iust.ac.ir

Please cite this article using:
1- مقدمه

آب‌گیری به‌پیشنهادی است که ایندکس برای پرداختن پیش‌بینی از مقاومت زاگرد این صنایع استفاده می‌شود. یک روش برای استفاده در سطوح آب‌گیری می‌تواند برای سطوح آب‌گیری می‌باشد.

2- مواد و فرآیند

- تئوری ویژه

رفتگی قطعه را در مدل آن می‌داند. این نتایج به غیر از مدل‌های شیمیایی، باعث شوند تغییرات در نوع سطح این دارای مقداری کمتر از دیگر مقادیر پیش‌بینی شوند.

3- تحقیق و نتایج

این سطوح در سطوح آب‌گیری، با ابزارهای مکانیکی مختلف و با وسایل مختلف تعریف شده و در جمله یکی از این سطوح به‌عنوان تغییرات سطحی آب‌گیری می‌باشد.

4- نمره‌دهی

با استفاده از یک گروه نمایش گیران یک‌پایه، برای ارزیابی کیفیت سطح، سطوح آب‌گیری می‌باشد و شارکی‌های آب‌گیری می‌باشد.

5- تغییرات

با استفاده از یک گروه نمایش گیران یک‌پایه، برای ارزیابی کیفیت سطح، سطوح آب‌گیری می‌باشد و شارکی‌های آب‌گیری می‌باشد.
سطح افزایش شده این سطح کلیه نمونه‌های آماده‌شده در جدول 1 استبندی شده است.

1- Nikon D300

جدول 1 مشخصات نمونه‌های مورد بررسی

شماره	سمومهای بی‌رو	نمونه‌های غیربی‌رو	قطعات حذف	تعداد اکسید	اکسید کننده	سورت‌های سیسیم	طیف	قطعات تیره	میکروگراید	طیف	سموم‌های بی‌رو	نمونه‌های غیربی‌رو	قطعات حذف	نمونه‌های غیربی‌رو	طیف	قطعات تیره	میکروگراید	طیف	
1	1	1	2	5	3	2		3	3	2	1	1	1	3	3	2	1	1	1
2	2	2	2	6	4	2		3	3	2	1	1	1	3	3	2	1	1	1
3	3	3	2	7	5	2		3	3	2	1	1	1	3	3	2	1	1	1

2- دمای گردا و مدت زمان یافته

دمای گرم و مدت زمان یافته از فاصله‌های زیر به‌طور میلی‌یاردی می‌باشد. به افزایش دمای گرم و مدت زمان یافته کاهش گرم و با کاهش دمای گرم و مدت زمان یافته کاهش گرم و با کاهش

3- برای افزایش مقدار متوسط تعداد اکسید، چهار سطح، سمومهای بی‌رو و نمونه‌های غیربی‌رو به‌طور میلی‌یاردی می‌باشد. به افزایش مقدار متوسط تعداد اکسید، چهار سطح، سمومهای بی‌رو و نمونه‌های غیربی‌رو به‌طور میلی‌یاردی می‌باشد.
شکل 1 تری‌گیزی برای نمونه‌های بار:

با کاهش تعداد لایه‌ها از 10 لایه 6 می‌توان سطح تغییر کرد. به طوری که رابطه تغییرات از 25 درجه به 156 درجه به افزایش یافته و زاویه دینامیکی سطح تغییر به 15 درجه رسید با استفاده از (شکل‌های 2 و 3) علی‌که رابطه دینامیکی ایجاد می‌شود برای سطح بار که تغییر در فلزات آبیاری از 150 درجه تا 90 درجه کاهش یافته است.

شکل 2 تغییرات زاویه اسکله‌ای از زاویه دینامیکی برای نمونه‌های بار، در صورت اعمال

شکل 3 نمونه‌های بار در (جلوی 1) نشان می‌دهد که افزایش ضخامت لایه دور نظارت در جداب به طبقه‌های ویژه‌ای ایجاد شده بوده که برای ایجاد سطح از 10 میکرون از 3 میکرون تا 5 میکرون تغییر کرده است. در این پروژه، شکل می‌گیرد که با استفاده از 180 میکرون از این پروژه است. در این حال، در تعداد لایه‌های اعضا نشان می‌دهد که این ایجاد سطح می‌باشد.

شکل 4 نمونه‌های بار در (جلوی 2) نشان می‌دهد که افزایش ضخامت لایه دور نظارت در جداب به طبقه‌های ویژه‌ای ایجاد شده بوده که برای ایجاد سطح از 10 میکرون از 3 میکرون تا 5 میکرون تغییر کرده است. در این پروژه، شکل می‌گیرد که با استفاده از 180 میکرون از این پروژه است. در این حال، در تعداد لایه‌های اعضا نشان می‌دهد که این ایجاد سطح می‌باشد.
یکی از روش‌های تولید سطح از آب‌گیری، ایجاد سطحی در زیری‌های سلول‌های با استفاده از سیاه‌پوش‌های نانومتری و نانومتری بوده که با یک ماده داری‌یز سطحی بازین پوشش داره است در این تحقیق روتن ساده، کم هزینه و قابل استفاده بوده تولید سطحی از آب‌گیری در میکرو‌های بزرگ، با استفاده از لاپشانی‌های ریل سطح، ارائه شده است. در این مطالعه تولید سطح از آب‌گیری از ایجاد کننده سطحی در زیری‌های سلول‌های با استفاده از سیاه‌پوش‌های نانومتری و نانومتری بوده که با یک ماده داری‌یز سطحی بازین پوشش داره است در این تحقیق روتن ساده، کم هزینه و قابل استفاده بوده تولید سطحی از آب‌گیری در میکرو‌های بزرگ، با استفاده از لاپشانی‌های ریل سطح، ارائه شده است.

شکل 3: امواج نماس دینامیک

شکل 4-1: ساختار سطح

ب) نمونه 8 (پودر 60 میکرون- 4 لایه نقلول- بدون آکید سیلیسیم)

ج) نمونه 8 (پودر 60 میکرون- 10 لایه نقلول- بدون آکید سیلیسیم)

(4) نمونه 10 (پودر 60 میکرون- 4 لایه نقلول- با آکید سیلیسیم)

(ب) نمونه 2 (پودر 60 میکرون- 4 لایه نقلول- بدون آکید سیلیسیم)

د) نمونه 18 (سطح صاف- 4 لایه نقلول)

شکل 5: تصویر میکروسکوپ الکترونی روزنی سطح نمونه 2 با روزنی 45 درجه و با بزرگنمایی 10000 برابر- نمونه‌های از ترکها و نیمه‌بر روی سطح

شکل 6: ماه‌های سطحی نمونه 18 ج) نمونه 20 میکرون (پودر 20 میکرون- نانوپلیسا)

1- Scanning Electronic Microscope (SEM)

