Analysis of tensile structure subjected to dynamic loading using state space

Shirko Faroughi1, Mahdi Bamdad2, Seyed Hamed Hoseini1

1- Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
2- Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

*P.O.B. 75155-419 Sho
ia, Iran, shirko@iust.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 05 January 2015
Accepted 16 March 2015
Available Online 04 April 2015

Abstract

Tensile structure is a kind of spatial structural system composed of cable (in tension) and strut (in compression). Stability is provided by the self-stress state between tensioned and compressed elements. When this structure is subjected to external dynamic loading, it may become unstable due to low structural damping. In this study, the proportional damping is considered and dynamical equations of the tensile structure are derived based on the equilibrium configuration. In addition, the mass of cable element is taken into account. Generally, linearized dynamical model provides a good approximation for analyzing the nonlinear behavior of tensile structures around an equilibrium configuration. Therefore, the state space method is implemented to obtain the dynamic response of the tensile structure system. Using this approach, two different tensile structures are numerically evaluated in order to show its efficiency. Results reveal how the dynamic analysis of a tensile structure is essential. The compressive and inelastic members of a tensile system may dynamically buckle and slack, respectively, in resonance condition.

Analysis of tensile structure subjected to dynamic loading using state space

Shirko Faroughi1, Mahdi Bamdad2, Seyed Hamed Hoseini1

1- Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
2- Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

*P.O.B. 75155-419 Sho
ia, Iran, shirko@iust.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 05 January 2015
Accepted 16 March 2015
Available Online 04 April 2015

Abstract

Tensile structure is a kind of spatial structural system composed of cable (in tension) and strut (in compression). Stability is provided by the self-stress state between tensioned and compressed elements. When this structure is subjected to external dynamic loading, it may become unstable due to low structural damping. In this study, the proportional damping is considered and dynamical equations of the tensile structure are derived based on the equilibrium configuration. In addition, the mass of cable element is taken into account. Generally, linearized dynamical model provides a good approximation for analyzing the nonlinear behavior of tensile structures around an equilibrium configuration. Therefore, the state space method is implemented to obtain the dynamic response of the tensile structure system. Using this approach, two different tensile structures are numerically evaluated in order to show its efficiency. Results reveal how the dynamic analysis of a tensile structure is essential. The compressive and inelastic members of a tensile system may dynamically buckle and slack, respectively, in resonance condition.

Please cite this article using:
1- Dynamic relaxation
2- Slacking
3- Double layer

قطم اول سبک مبانی است. که این مرحله از اصلی است. تحلیل استاتیک است. در واقع سبک مبانی طراحی مدل سبک مبانی است. بر این اساس مرحله سبک مبانی استاتیک فراهم است که در این یک هندسه پایدار در پایه یک تولیدی مشخص، برای سازه ایجاد می‌گردد. الگوریتم‌های که برای سبک مبانی استاتیک مورد استفاده قرار می‌گیرد به دو دسته کلی سبک‌مایه و استاتیکی تقسیم می‌شود [10] روش‌های تحلیلی که برای سبک مبانی استاتیک مشابه گرفته می‌شود. این

عکس نما کننده جورجیا [7]

به نمایش سازه تسکرینی استاتیک اینک [8]

چ گاههای HALCA همراه با مهناهات کانکی [9]
تجزئه سازه تنش‌گیریت تحت بار دینامیکی با استفاده از روش حالت‌گیری

آوردهد. اگر آن‌ها استقرار نشان نمایند که برای تحلیل دینامیکی این نوع سازه‌ها

MI + Cω + Kω + F = 0

(1)

با تریب ماتریس جرم، جریان، بار و سطح ماتریس

m = Cω + Kω

(2)

درجه ازدیاد است. این مهندسی است. در مورد یک شور دینامیکی است. به‌طور کلی

K = K + K

(3)

در این رابطه طول ولیع اکستگاه دهنده سازه تنش‌گیریت قبل از اعمال پوشش بسته ورودی پوششی به

(4)

در واقع با استفاده از این رابطه طول ولیع اکستگاه دهنده سازه تنش‌گیریت قبل از اعمال پوشش بسته ورودی پوششی به

F = Pq1i

(5)

برای پوشش بسته ورودی طول سازه هستی و به یک مرحله پیش‌بینی دهنده سازه تنش‌گیریت قبل از اعمال پوششی ماتریس جرم و مارد و سطح ماتریس

تکست ماتریس است. در مورد سازه‌های خاصی، ماتریس جرم و مارد و سطح ماتریس

(6)

در حالی که در این رابطه طول سازه هستی و به یک مرحله پیش‌بینی دهنده سازه تنش‌گیریت قبل از اعمال پوششی ماتریس جرم و مارد و سطح ماتریس

(7)

Fکاهش جرم می‌باشد و این شرایط را باعث کاهش مقدار جرم و مارد می‌گردد.

این برای نمونه یک مثالی است. در مورد سازه‌های خاصی، ماتریس جرم و مارد و سطح ماتریس

(8)

در این رابطه طول سازه هستی و به یک مرحله پیش‌بینی دهنده سازه تنش‌گیریت قبل از اعمال پوششی ماتریس جرم و مارد و سطح ماتریس

(9)

در حالی که برای نمونه یک مثالی است. در مورد سازه‌های خاصی، ماتریس جرم و مارد و سطح ماتریس

(10)

در این رابطه طول سازه هستی و به یک مرحله پیش‌بینی دهنده سازه تنش‌گیریت قبل از اعمال پوششی ماتریس جرم و مارد و سطح ماتریس

(11)

در حالی که برای نمونه یک مثالی است. در مورد سازه‌های خاصی، ماتریس جرم و مارد و سطح ماتریس

(12)

در این رابطه طول سازه هستی و به یک مرحله پیش‌بینی دهنده سازه تنش‌گیریت قبل از اعمال پوششی ماتریس جرم و مارد و سطح ماتریس

(13)
بهباد هدف این مقاله، بدست آوردن پایه دینامیکی سازه ترکیبی تحت اثر
برای دیانامیکی است. برای اجرا این کار ابتدا مدل‌سازی یافته،
سیم و مشتق مساقب بهره‌مندی از مدل‌های (7) در مقالات
راه‌کاری، نتیجه‌گیری پایه‌ای بهترین نتایج در طول این
وقت اجرای این کار بود. گزارش شده است که این
تکنیک در مقالات گزارش شده است.

3- نمودار مکانیک حرکت در فضاهای حالت
برای توجه مکانیک حرکت در فضاهای حالت، ابتدا
طرفین مکانیک (1) را در مکروسیستم‌ها جرم ضرب نموده و به شکل را
در مقالات (5) معرفی کرده است.

6- مثال عدید
در این مقاله جزئی از این مقاله پایه دینامیکی
رها خواهد شد. ابتدا میزان ترکیبی تحت اثر اثر دینامیکی
فرایند زیر

\[
X(t) = \exp(t - t_0) K X_0 + \int_{t_0}^t \exp(t - \tau) F^* (\tau) d\tau
\]

(13)

باین نیم‌ترین مکانیک حرکت ودیده‌ای بوده است که
عین در فضاهای حالت، این مقاله پایه دینامیکی
طنزگیرنده در مقالات گزارش شده است.

\[
X_{n+1} = A X_n + B_1 F_n + B_2 (F_n^m - F_n^s)
\]

(14)

با استفاده از نکات اولیه در مقاله هامونیک
\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(15)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(16)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(17)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(18)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(19)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(20)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(21)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(22)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(23)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(24)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(25)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(26)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(27)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(28)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(29)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(30)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(31)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(32)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(33)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(34)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(35)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(36)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(37)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(38)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(39)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(40)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(41)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(42)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(43)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(44)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(45)

\[
X(t) = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2} \sum_{n=1}^{\infty} \exp(h n \delta) X_0
\]

(46)

\[
A = \exp(h K^*); \quad B_1 = (K^*)^{-1} (A - I)
\]

(47)

\[
B_2 = (K^*)^{-1} \left[\frac{1}{h} B_1 - A \right]
\]

(48)

\[
K^* = \left[\frac{C - \exp(-h \delta)}{h \delta} \right]^{1/2}
\]

(49)
در این مقاله، از سه نوع دریافتی سه بعدی مشبک استفاده شده است. ارتفاع سه دریافتی سه بعدی مشبک ۴۰ سانتی‌متر بوده است. شکل ۳ پایه‌ای دریافتی سه بعدی مشبک در جهت ۴ در چهارم و ۳ در چهارم است. شکل ۲ نمای سه‌차원ی تحت بار دریافتی با استفاده از روی فضای مختصات کامپیوتر برای مشاهده نموده شده است.

جدول ۱ مشخصات هندسی و فیزیکی سازه تصویری استلیسون‌ایکس

<table>
<thead>
<tr>
<th>چگالی</th>
<th>مدل انرژی (کیلوکیلو)</th>
<th>فاز (سیکلو)</th>
<th>مدل انرژی (میلی‌سیگنال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸</td>
<td>۲۴۲۰</td>
<td>۱۴</td>
<td>۱۱۵</td>
</tr>
<tr>
<td>۱۱۵</td>
<td>۷۸۰۰</td>
<td>۲۲</td>
<td></td>
</tr>
</tbody>
</table>

سازه نماشی داده شده در شکل ۲ تحت بار دریافتی شکل ۴ از گرفته‌ها است. پایه‌ای دریافتی سازه به‌وسیله دو روش بررسی می‌شود. شکل ۵ پایه‌ای دریافتی، در جهت ۲ را نشان می‌دهد.
تعیین سازه تستگری تحت بار دینامیکی با استفاده از روش فضای حالت

شیرکو فارویی و همکاران

الف. نمایش پرسپکتیو سازه تستگری تحت بعدی مشیکه

ب. نمایش دید از بالا سازه تستگری تحت بعدی مشیکه

شکل 7: نمایش سازه تستگری تحت بعدی مشیکه

است سازه مذکور از 79 کر، 209 المان نخ و 80 المان میله همچون شکل 7-الف و 7-ب نشان داده شده تشکل تشدید بردار جهتالین، مقادیر ضریب P و خصوصیات مکانیکی سازه در جدول 2 داده است:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سازه برای گردهای 4 و 48 در جهتهای مختلف در شکل‌های 10 و 11 نشان داده شده است. همانطور که از شکل‌ها مشاهده می‌شود، نتایج سازه در شکل 7-الف در کلیه گردهای فوقانی تحت نیروی دینامیکی هارمونیک به قرن می‌پردازد. پایان گرفته است. پایان گردهای 4 و 48 در تمام جهت‌ها در شکل‌های 8 و 9 با استفاده از روش فضای حالت مشاهده شد.

اکنون سازه فوق تحت اثر بار خارجی دینامیکی هارمونیک بار
با در نظر گرفتن دستگاه‌های هموگونی $C = \beta \rho M + \beta_r K$ برای سازه مورد نظر، ضرایب میزان سازه تندرستی براساس روش جوده‌دار و همکارانش [35] به ترتیب برای $\beta = 0.00064$ و $\beta_1 = 0.069$ بدست می‌آید. پایه‌گذاری پایه‌گذاری

جدول 2: مشخصات هندسی و مکانیکی سازه تندرستی به دلیل مشابهت

<table>
<thead>
<tr>
<th>چگالی</th>
<th>مقدار</th>
<th>ظرفیت (کیلوگرم)</th>
<th>ضریب P</th>
<th>سرکش (کیلوگرم/ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>129.50</td>
</tr>
<tr>
<td>5500</td>
<td>28</td>
<td>2420</td>
<td>10</td>
<td>209.50</td>
</tr>
<tr>
<td>5500</td>
<td>115</td>
<td>7800</td>
<td>50</td>
<td>-2</td>
</tr>
<tr>
<td>5500</td>
<td>115</td>
<td>7800</td>
<td>50</td>
<td>289.210</td>
</tr>
</tbody>
</table>
Skeletal tensegrity: New solutions for complex structures

I. M. B. Raig, T. Grätzel, "Recommendations for practical use of numerical methods in linear and nonlinear dynamics" Berliner Tor 21, Hamburg, Germany, 2009.

