Hydrodynamics of restrained buoy with an approach to wave energy absorption enhancement

Mehdi Nazari Berenjkoo1, Mahmoud Ghiasi1*
1 - Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran.
* P.O.B. 15875-4413 Tehran, Iran, mghiasi@aut.ac.ir.

ARTICLE INFORMATION

Original Research Paper
Received 25 February 2017
Accepted 27 March 2017
Available Online 29 April 2017

Keywords:
Uppsala converter
Point absorber buoy
Conical buoy
Spherical-cap buoy
Stokes wave energy

ABSTRACT

In single-body converters of ocean wave energy, oscillations of a floating body (buoy) serve as the main driving force for electricity generation. Buoy geometry optimization is known as an approach to enhance the efficiency of these converters. In the present research, the process of wave energy absorption in point absorber converter is modeled as a spring-damper system. Two geometries are considered for the buoy of the converter (conical and spherical-cap). The effects of buoy geometry on its dynamics in the nonlinear wave are investigated and comparison of these effects on dynamic performances of the modeled converter is reported. Equalization of environmental conditions and modeling of the two models were discussed, and a new equalization method was proposed. Effective wave energy on each model was calculated based on geometrical characteristics of the corresponding buoy. Then, the models were hydrodynamically analyzed via boundary element method by taking the diffraction theory as the governing theory. The incident wave was assumed to be a second order Stokes wave.

Results were obtained in both time and frequency domains and validated against the results of available research. Maximum dynamic responses of the restrained buoy with spherical-cap geometry in heave and surge (vertical and horizontal directions, respectively) were found about 4.4% and 11.3% higher than that of the other model. The average percentage of absorbed wave energy by the buoy of the converter (conical and spherical-cap). The effects of buoy geometry on its dynamics in the nonlinear wave are investigated and comparison of these effects on dynamic performances of the modeled converter is reported. Equalization of environmental conditions and modeling of the two models were discussed, and a new equalization method was proposed. Effective wave energy on each model was calculated based on geometrical characteristics of the corresponding buoy. Then, the models were hydrodynamically analyzed via boundary element method by taking the diffraction theory as the governing theory. The incident wave was assumed to be a second-order Stokes wave.

Results were obtained in both time and frequency domains and validated against the results of available research. Maximum dynamic responses of the restrained buoy with spherical-cap geometry in heave and surge (vertical and horizontal directions, respectively) were found about 4.4% and 11.3% higher than that of the other model. The average percentage of absorbed wave energy by the modeled converter with spherical-cap buoy was about 2.2-2.5% higher than that of the other model. The average percentage of absorbed energy by the models was predicted to range within 20-24%.

Please cite this article using:
همه پایین‌های انتزاعی مواد با انتزاع الکتریکی استفاده می‌شوند.

ماده‌های ناخالص مثل ماده سخت‌پوشان، نیترایل، گلاس و غیره دارند که انتخاب درست آن‌ها باید بر اساس امکانات و مشخصات مخاطب فیزیکی می‌باشد.

شیب‌های حرارتی و رطوبتی در مراحل مختلف تهیه‌کنند. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین خلال مراحل مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

شیب‌های حرارتی و رطوبتی در مراحل مختلف تهیه‌کنند. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

شیب‌های حرارتی و رطوبتی در مراحل مختلف تهیه‌کنند. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

شیب‌های حرارتی و رطوبتی در مراحل مختلف تهیه‌کنند. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین

می‌باشد. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.

شیب‌های حرارتی و رطوبتی در مراحل مختلف تهیه‌کنند. در ماه‌های مختلف تهیه‌کنند مناسب‌ترین انتزاع الکتریکی استفاده می‌شوند.
3- مدل سازی عملکرد مبدل تک بندی در جذب ازی موج

جهت محاسبه میزان ازی اتصالی از موج در مدل تک بندی جذب نیاز به یک مدل سازی برای شبیه‌سازی این پدیده وجود دارد. در این مدل سازی از ابزار MATLAB استفاده شده است.

4- فضایی

یکی از مدل‌سازی‌هایی که برای شبیه‌سازی این پدیده از آن استفاده می‌شود، مدل سازی برون‌نبه در دسترس است. این مدل سازی در محیط MATLAB استفاده شده است. در این مدل سازی، از مدل سازی برون‌نبه استفاده گردیده است.

5- هندسه و آبادی پویش جاذب ازی موج

طرزی‌السازی شناور در گونه‌ای مانند سکوهای استخراج نفت به‌کار رفته کامش نشان می‌دهد. این پویش جاذب ازی موج به‌کار رفته در جاذب‌های محیطی است. این پویش جاذب ازی موج به‌کار رفته در جاذب‌های محیطی است.
هیدرودینامیک بویه مهارشده با رویکردهای بهبود در جذب انرژی موج

مهدی نظزی بزنجکوب و محمود غیاثی

در حالی که برای طراحی یک بویه جاذب انرژی موج یاد عکس آن حمل کرده و هنزده بویه طوری تعین شد تا بیشترین دامنه حرکت در اثر برخورد هوش ماحول گردد.

برای مقایسه عملکرد هیدرودینامیک بویه‌ها یکگونه میزان انرژی جذب‌شده نسبت به بررسی تعداد موج بر هر کیک بویه در آنالیز مورد نظر یافته شد.

جدول ۱ مشخصات دو بویه با شعاع و جرم یکسان و نیز بویه استفاده‌شده در پژوهش

<table>
<thead>
<tr>
<th>شعاع (متر)</th>
<th>جرم (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷.۵۰۰</td>
<td>۱۹۸۵۱۴۵</td>
</tr>
<tr>
<td>۵.۷۰۵</td>
<td>۷۵۰۰۰۰۰</td>
</tr>
<tr>
<td>۴.۷۰۰</td>
<td>۳۵۰۰۰۰۰</td>
</tr>
</tbody>
</table>

شکل ۳ هندسه بویه مهارشده در پژوهش عده ویستن در ایام یکست

شکل ۴ هندسه بویه مخروط و بویه کیک‌‌روی با شعاع و وزن یکسان

مکانیک مشخصه هیدرودینامیکی جسم از امواج یکی از مسائل مهم در هیدرودینامیک است. روی‌های متفاوت جست ماکسا یاد برای این روش تحقیق و هب روست را نمایش داده است. در این زمینه کارهای بسیاری صورت گرفته است. می‌توان به پژوهش‌های سالم‌های اخیر متعارض تهیه و توان نظریه هیدرودینامیک برای اولین بار در یک سال ابتدا یافته است. تغییر می‌باشد.

حرفی نیاز به بررسی هیدرودینامیکی از طرف منابع تئوری تحقیق کوتونوسی به یاری می‌نماید. با توجه به فرمول (۰/۰) نسبت مطلق موج مهار (0.۲) نسبت مطلق موج مهار (0.۲) نسبت مطلق، عبارت از ارتباطی داده می‌باشد.

شکل ۵ هندسه بویه مخروط و بویه کیک‌‌روی با شعاع و وزن یکسان

شکل ۶ سیستم مدل

۱ SOLIDWORKS

۱۳۲
Despite the variability in wave load parameters (C), the results revealed that the wave load on the moored buoy can be significantly reduced by changing the geometry of the buoy, especially at frequencies above 250 kN/m²/s and 180 kN/m²/s. This finding is consistent with previous studies [12].

Modeling of moored buoy with different geometries within the frequency domain

Figure 6 illustrates a comparison between the present study and reference studies [10]. The results show that the wave load on the moored buoy decreases as the frequency increases, with a notable reduction at higher frequencies.

Waves and Oscillations

In the frequency domain, the response of the moored buoy to regular waves was analyzed. The results indicated that the response amplitude operator (RAO) for the moored buoy is significantly reduced as the frequency increases. However, the RAO is relatively constant at frequencies below 250 kN/m²/s and 180 kN/m²/s.

Conclusion

The study demonstrated the effectiveness of changing the geometry of the moored buoy to reduce wave loads. Future research could focus on optimizing the design of moored buoys for specific wave conditions.
بی‌نظر ارائه اکنون و مجموعه عیالی

هیدرودینامیک بویه مهارشده با روشی بهبود در جذب انرژی موج

مقدار درجه حرارت بویه مهارشده شماره یک و دو در چهار (۶/۸ هیو) به ترتیب برای با ۰.۷۶۳۷ و ۰.۷۶۱۵ متر، در چهارت (۶/۸ هیو) به ترتیب برای با ۱.۴۴۸۳ و ۱.۴۳۲۵ متر است.

براساس رابطه (۳) برای محاسبه افزایش ایستادگی از موج نیاز به محاسبه سرعت هیو و نیز تغییر طول کالب هیو مهارشده در هر باره زمانی است. این مقادیر برای بویه مهارشده در هر دو مدل مهارشده با بویه کابیک در درک ۱۰ ترمیم شده است. ناحیه نشان می‌دهد که متوسط سرعت بویه در دو در چهار (۳/۸ هیو) بر طبق معادلات (۴) و (۴/۸ هیو) بر طبق معادلات (۶) و (۶/۸ هیو) به ترتیب برای با ۰.۷۳۹۵ و ۰.۷۳۹۵ متر است.

جدول ۲ تغییر طول کالب و سرعت هیو در هیو و سرعت، سرعت سرعت سرعت هیو و سرعت

<table>
<thead>
<tr>
<th>تاریخ</th>
<th>حداکثر طول کالب</th>
<th>سرعت هیو</th>
<th>سرعت (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۸۱۸۹</td>
<td>۲.۴۲۱۹</td>
<td>۰.۸۱۲۷</td>
<td>۰.۸۵۳۸</td>
</tr>
<tr>
<td>۰.۸۵۴۷</td>
<td>۲.۶۹۵۴</td>
<td>۰.۸۲۶۰</td>
<td>۰.۸۷۶۹</td>
</tr>
</tbody>
</table>

اتوبس و تونیس آسیب به یک از این نظر یا بررسی گوناگونی برای کاهش در این زمان، مشخص که متوسط سرعت هیو در دو در چهار (۶/۸ هیو) بر طبق معادلات (۴) و (۴/۸ هیو) به ترتیب برای با ۰.۷۳۹۵ و ۰.۷۳۹۵ متر است.

جدول ۱۰ تغییر طول کالب و سرعت هیو برای درای مدل مهارشده با بویه مخربورتو

![Fig. 10: Cable length variation and heave speeds for moored model with Cone and Spacial-Cap buoy](https://example.com/fig10)

شکل ۱۰ تغییر طول کالب و سرعت هیو برای درای مدل مهارشده با بویه مخربورتو

![Fig. 8: The ratio of heave responses (H) of two buoys to the amplitude of incident regular wave in the time domain. Regular wave of $A_w = 1$ m, $T_w = 6.5$ s and $C = 200$ kn/m (m/s), $K_w = 100$ kn/m](https://example.com/fig8)

شکل ۸ نسبت پاسخ هیو دو بویه به جریان منظم برخوردی با دامنه یک متر و بزرگ

200 kn/m (m/s), 100 kn/m (m/s), 6.5 kn/m (m/s)

![Fig. 9: The ratio of surge responses (X) of two buoys to the amplitude of incident regular wave in the time domain. Regular wave of $A_w = 1$ m, $T_w = 6.5$ s](https://example.com/fig9)

شکل ۹ نسبت پاسخ سرج دو بویه به جریان منظم برخوردی با دامنه یک متر و بزرگ

6.5 kn/m (m/s)

2 Validity of wave theories graph (Le Mehaute, 1969)
هجوم فرضیه بویه مهارشه با رویکرد بهبود در جذب انرژی موج

مهندسی مکانیک مدرس، مرداد ...

شکل ١٢ یکپاره ناحیه باری بومی مهارشه با هندسه غیر مخروطی و کپ کروی

موج فرض شده در محصول امواج استوکس مرمیت دو مرتبه در این بررسی مورد استفاده قرار گرفته است و تابع پتانسیل آن (ϕ) به صورت روابط (7) و (8) تعریف شد.

\[\eta = A_w \cos(kx - \omega t) + \frac{A_{w,k}}{4} \sinh(kh) \]

\[\phi = \frac{A_{w,k}}{\omega} \cos(k + z) \sinh(kh) \]

(7)

(8)

انرژی مونت موج (E_w) مشابه از انرژی پتانسیل موج (E_p) و انرژی جنبشی (E_j) است که به شکل ارائه (9) تعریف می‌شد. با اعمال (8) و (9) در رابطه (9) سیان ایراد مونت موج در جهت x و y هم‌جنس می‌شود و سپس مقایسه انرژی پتانسیل و انرژی جنبشی مونت موج بر حسب مقدار مونت بر بویه (h) و طول موج (λ) بدست می‌آمد.

\[E_w = E_p + E_j \]

\[E_j = \int_s \int_z \frac{u^2 + v^2}{2} dx \]

(9)

به عنوان مقدار مونت بر بویه مکرنش برای مغذی (بویه) برابر با طول موج (3m) و 3m باید به کپ کروی است که به طول موج (E_w) و ارتفاع اریزی مونت موج بر بویه مهارشه ویا بسیار به مقدار مونت بر بویه (E_j) تعریف می‌شد. با اعمال (7) برای مونت هر دو طرف مونت موج (E_j) به مقدار مونت بر بویه (E_w) را حساب می‌شود.

\[E_j = \frac{A_{w,k}}{\lambda} \frac{\omega}{\pi r_g^2} \]

\[\frac{A_{w,k}}{\omega} = \frac{\pi r_g^2}{\lambda} \]

(10)

شکل ١١ نسبت انرژی جنبشی از مونت (E_j) به انرژی مونت موج بر بویه (E_w) در جهت زمان (τ) ٣-٠ اریزی استحصال از مونت بر بویه

انرژی استحصال از مونت بر بویه (E_j) به عنوان سطح ماده مدل جعبه قطعی (شکل ٢) و با استفاده از معادله (7) و (9) به قید (شکل ١٢) استفاده شد که به صورت ارائه (10) به تعریف می‌شد. برای کپ کروی از (7) و (9) به مقدار اریزی مونت موج بر بویه (E_j) به طور متوسط ٢٢.٤% و هم‌جنس مونت بر طول موج (E_w) به طور متوسط ٢٤.٩% بیشتر از اریزی جنبشی مونت موج بر بویه بود.

است (شکل ١٢)
هیدرودینامیک بویه مهارشده با رویکرد بهبود در جذب انرژی موج

جدول 4 مقادیر دامنه حرکت سرگر در بویه مخروطی مهارشده و بویه کپکروی در مخروطی و بویه کپکروی (در هزه فرکانس)

<table>
<thead>
<tr>
<th>مخروطی</th>
<th>هرکوم</th>
<th>هرکوم</th>
<th>کپکروی</th>
<th>کپکروی</th>
<th>هرکوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3%</td>
<td>20.50%</td>
<td>31.04%</td>
<td>22.71%</td>
<td>34.16%</td>
<td>28.12%</td>
</tr>
</tbody>
</table>

Table 4 The ratio of the maximum and average absorbed energy to the effective energy of wave by each model

در Fig. 15 نیز نسبت اثری استحصالی از موج به آن موتور به بویه مخروطی در جذب انرژی موج مفهوم و حاکم در این دو بود که در نسبت حداکثر دامنه حرکت سرگر بویه مهارشده با بویه کپکروی حدود 2.21% نسبت مدل مهارشده به بویه مخروطی در جذب انرژی موج مفهوم و حاکم است.

Fig. 15 The ratio of absorbed energy to the effective energy of wave on each moored buoy (in the frequency domain)

شکل 15 نسبت اثری استحصالی از موج به آن موتور به بویه مهارشده (در هزه فرکانس)

در تحقیق خارجی آن‌اندازه موتور به بویه می‌تواند برای پایه‌رس و سیستم زمان بکار بروند. در این دو بود که در نسبت حداکثر دامنه حرکت سرگر بویه مهارشده با بویه کپکروی حدود 2.21% نسبت مدل مهارشده به بویه مخروطی در جذب انرژی موج مفهوم و حاکم است.

Fig. 13 Average of motion domain in surge within occurred time of the maximum heave for two models

شکل 13 دامنه متوسط حرکت سرگر در محدوده زمان رخ داد حداکثر دامنه هوی برای بویه مهارشده

در Fig. 14 نیز نسبت اثری استحصالی از موج به آن موتور به بویه می‌تواند برای پایه‌رس و سیستم زمان بکار بروند. در این دو بود که در نسبت حداکثر دامنه حرکت سرگر بویه مهارشده با بویه کپکروی حدود 2.21% نسبت مدل مهارشده به بویه مخروطی در جذب انرژی موج مفهوم و حاکم است.

Fig. 14 Average of velocity domain in heave within occurred time of the maximum heave for two models

شکل 14 دامنه متوسط حرکت سرگر در محدوده زمان رخ داد حداکثر دامنه هوی برای بویه مهارشده (زهه فرکانس)

References