تحلیل کمپاکت و فلاتر پنل ساندویچی مرکب در جریان مافوق صوت

مصطفی لیوانی، کرامت ملک زاده فرد، سعید شکراللهی

کد مقاله: 1. نامه، 2. انتشار، 3. استاندارد

چکیده

در این مقاله، تحلیل فلاتر و کمپاکت دوموجه پنل ساندویچی مرکب بر سیستم نوری مرتبه بالا، آنالیز و ساختار جریان نارنجی بر روی یک نیم مهندسی ساندویچی مرتبه بالا ارائه نشان داده شده است. برای این نظریه، تحلیل ارائه شده در توری خاص، نشان دهنده عرضی در روی‌ها و نشان دهنده دوری‌پذیری در روی‌ها و نشان دهنده شرایط پلاکی در روی‌ها و نشان دهنده شرایط دوختنی در روی‌ها و نشان دهنده عرضی در روی‌ها می‌باشد. به منظور بررسی قابلیت ازدحام بنا به عدم تغییرات تعداد طبقات و نیز تغییرات در طبیعت روی‌ها، شرایط و شرایط پنل، الگوی استحکام و انعطاف پذیری پنل مشخص شده است. نتایج این مطالعه نشان داد که افزایش طول و چسبانی روی‌ها و نیز افزایش غلظت روابط شرایط پنل به صورت مفید برای استحکام و انعطاف پذیری پنل کمک می‌کند. نتایج به بررسی عرضی در روی‌ها و نیز به استحکام و انعطاف پذیری پنل کمک می‌کند. نتایج به بررسی عرضی در روی‌ها و نیز به استحکام و انعطاف پذیری پنل کمک می‌کند.

Buckling and flutter analyses of composite sandwich panels under supersonic flow

Mostafa Livani, Keramat Malekzadeh Fard*, Saeed Shokrollahi

Department of Aerospace Engineering, Malek Ashtar University of Technology, Tehran, Iran

ARTICLE INFORMATION

Original Research Paper
Received 15 February 2016
Accepted 10 June 2016
Available Online 20 July 2016

Keywords:
Sandwich panel
High order theory
Flutter
Biaxial buckling

ABSTRACT

This study dealt with the flutter and biaxial buckling of composite sandwich panels based on a higher order theory. The formulation was based on an enhanced higher order sandwich panel theory in which the vertical displacement component of the face sheets were assumed as quadratic while a cubic pattern was used for the in-plane displacement components of the face sheets and all displacement components of the core. The transverse normal stress in the face sheets and the in-plane stresses in the core were considered. For the first time, the continuity conditions of the displacements, transverse shear and normal stress at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are simultaneously satisfied. The aerodynamic loading was obtained by the first-order piston theory. The equations of motion and boundary conditions were derived via the Hamilton principle. Moreover, effects of some important parameters like load-up of the face sheets, length to width ratio, length to panel thickness ratio and thickness ratio of the face sheets to core were considered. For the first time, the continuity conditions of the displacements, transverse shear and normal stress at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are simultaneously satisfied. The aerodynamic loading was obtained by the first-order piston theory. The equations of motion and boundary conditions were derived via the Hamilton principle. Moreover, effects of some important parameters like load-up of the face sheets, length to width ratio, length to panel thickness ratio and thickness ratio of the face sheets to core were considered.

References:

Please cite this article using:

در اینجا به تغییرات دریافتی به مشاهده قرار داده می‌شود.

1. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

2. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

3. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

4. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

5. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

6. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

7. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

8. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

9. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.

10. برای تغییرات دریافتی به مشاهده قرار داده می‌شود.
2-1 مدل هندسی مواد مطالعه

مدل هندسی مواد مطالعه در این مقاله عبارت است از یک پل ساندویچی تعیین که از دو روی مواد مرکب لایه‌ای تشکیل شده است (شکل 1). خصایص
روده‌های بالایی و پایین و هسته به ترتیب با مقدار نتایج

رویه‌ها و هسته هم چنین و اضاف کلی برای است. همچنین

لاها یکی از شمال کاملاً در نظر گرفته شده است

ماده در محدوده اندازه‌گیری خلیجی می‌باشد.

از آتاره‌بیان برای در هسته و رویه یک صرف می‌شود و تنه

دیروز این ارتباط با افزایش این سطح می‌شود و تنه

 Expense این مطالعه برای است. همچنین

مطالعه برای دبیرکننده مسئول سیاوش کریمی در انجام

پژوهش حاضر در جدول 1 نهایت است.

101

Table 1 Assumption of the present research

<table>
<thead>
<tr>
<th>فرضیات</th>
<th>رفیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>رویه‌ها و هسته از ساندویچ‌ی از جنس مواد مرکب لایه‌ای حاوی ساخته شده</td>
<td>1</td>
</tr>
<tr>
<td>هسته از ساخته شده رویه‌ها و هسته به مساحت کاملاً برای است. همچنین</td>
<td>2</td>
</tr>
<tr>
<td>لاها یکی از شمال کاملاً در نظر گرفته شده است</td>
<td>3</td>
</tr>
<tr>
<td>ماده در محدوده اندازه‌گیری خلیجی می‌باشد.</td>
<td>4</td>
</tr>
<tr>
<td>از آتاره‌بیان برای در هسته و رویه یک صرف می‌شود و تنه</td>
<td>5</td>
</tr>
<tr>
<td>دیروز این ارتباط با افزایش این سطح می‌شود و تنه</td>
<td>6</td>
</tr>
<tr>
<td>Expense این مطالعه برای است. همچنین</td>
<td>7</td>
</tr>
<tr>
<td>رویه‌ها و هسته در هسته و رویه یک صرف می‌شود و تنه</td>
<td>8</td>
</tr>
<tr>
<td>Expense این مطالعه برای است. همچنین</td>
<td>9</td>
</tr>
</tbody>
</table>

1 Simply support

2-2 مدل هندسی مواد مطالعه

مدل هندسی مواد مطالعه در این مقاله عبارت است از یک پل ساندویچی تعیین که از دو روی مواد مرکب لایه‌ای تشکیل شده است (شکل 1). خصایص
روه‌های بالایی و پایین و هسته به ترتیب با مقدار نتایج

مطالعه رفران دینامیکی ساده‌های ساندویچی می‌گردد. لذا با توجه به اینکه

نتیجه مدل و نتیجه بیشتر نتیجه‌های دقیق در راستای

ضخامت‌ها و هسته‌هایی تشکیل شده در نتیجه

به لحاظ کردن اثرات انعطاف‌پذیری هسته باشد، ضروری است. به همین

منظور از این مطالعه بالا پنل ساندویچی مورد استفاده قرار

می‌گیرد. جابجایی‌های یک و یک و رویه در جهت موثر می‌باشد.

Fig. 1 Schematic of a sandwich panel under supersonic flow

شکل 1 شماتیک پنل ساندویچی تحت جریان مافوق صوت

جدول 1 فرضیات پژوهش حاضر

<table>
<thead>
<tr>
<th>فرضیات</th>
<th>رفیق</th>
</tr>
</thead>
<tbody>
<tr>
<td>رویه‌ها و هسته از ساندویچ‌ی از جنس مواد مرکب لایه‌ای حاوی ساخته شده</td>
<td>1</td>
</tr>
<tr>
<td>هسته از ساخته شده رویه‌ها و هسته به مساحت کاملاً برای است. همچنین</td>
<td>2</td>
</tr>
<tr>
<td>لاها یکی از شمال کاملاً در نظر گرفته شده است</td>
<td>3</td>
</tr>
<tr>
<td>ماده در محدوده اندازه‌گیری خلیجی می‌باشد.</td>
<td>4</td>
</tr>
<tr>
<td>از آتاره‌بیان برای در هسته و رویه یک صرف می‌شود و تنه</td>
<td>5</td>
</tr>
<tr>
<td>دیروز این ارتباط با افزایش این سطح می‌شود و تنه</td>
<td>6</td>
</tr>
<tr>
<td>Expense این مطالعه برای است. همچنین</td>
<td>7</td>
</tr>
<tr>
<td>رویه‌ها و هسته در هسته و رویه یک صرف می‌شود و تنه</td>
<td>8</td>
</tr>
<tr>
<td>Expense این مطالعه برای است. همچنین</td>
<td>9</td>
</tr>
</tbody>
</table>

1 Simply support

3 استخراج مقالات حاکم

در این بخش، در ابتدای مدل هندسی مواد مطالعه از جنگ میرداماد، سپس مورد استفاده آن می‌باشد. بد از این شرایط سازگاری جابجایی ها و شنی

می‌شود. در ابتدای این بخش، مدل مورد استفاده با توجه به طبقه بندی کمک به می‌باشد. مدل مورد استفاده با توجه به طبقه بندی کمک به می‌باشد.
\[
\begin{align*}
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\tau_{xy} \\
\tau_{xz} \\
\tau_{yz} \\
\end{bmatrix} =
\begin{bmatrix}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 & 0 \\
Q_{12} & Q_{22} & Q_{23} & 0 & 0 & 0 \\
Q_{13} & Q_{23} & Q_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & Q_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & Q_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & Q_{66} \\
\end{bmatrix}
\end{align*}
\]

(4)

\[Q_{\text{min}} = \begin{cases}
2 & \text{if } n = 1.24 \\
3.5 & \text{if } n = 3.56
\end{cases} \]

(1)

\[
\begin{align*}
\nabla_x l &= \frac{\partial l}{\partial x} + \frac{1}{2} \left(\frac{\partial w_i}{\partial x} \right)^2 \\
\nabla_y l &= \frac{\partial l}{\partial y} + \frac{1}{2} \left(\frac{\partial w_i}{\partial y} \right)^2 \\
\nabla_z l &= \frac{\partial l}{\partial z} + \frac{1}{2} \left(\frac{\partial w_i}{\partial z} \right)^2 \\
\end{align*}
\]

(2)

\[
\begin{align*}
\nabla_{xy} l &= \frac{\partial l}{\partial x} + \frac{1}{2} \left(\frac{\partial w_i}{\partial y} \right)^2 \\
\nabla_{xz} l &= \frac{\partial l}{\partial x} + \frac{1}{2} \left(\frac{\partial w_i}{\partial z} \right)^2 \\
\nabla_{yz} l &= \frac{\partial l}{\partial y} + \frac{1}{2} \left(\frac{\partial w_i}{\partial z} \right)^2 \\
\end{align*}
\]

(3)

\[
\begin{align*}
\nabla_{xy} l &= \frac{\partial l}{\partial x} + \frac{1}{2} \left(\frac{\partial w_i}{\partial y} \right)^2 \\
\nabla_{xz} l &= \frac{\partial l}{\partial x} + \frac{1}{2} \left(\frac{\partial w_i}{\partial z} \right)^2 \\
\nabla_{yz} l &= \frac{\partial l}{\partial y} + \frac{1}{2} \left(\frac{\partial w_i}{\partial z} \right)^2 \\
\end{align*}
\]

(3)
\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \alpha \frac{\partial w_{01}}{\partial x} + \gamma \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٤

\[\beta_a = \frac{\rho_a V_a^2}{\sqrt{M_a^2 - 1}} \]

١٥

حالة كاراهي.

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + h_1 \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٩

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + h_1 \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٨

\[\frac{N_{xy}}{M_{xy}} = \frac{h_i}{2}, \quad \frac{Q_{xy}}{H_{xy}} = \int_{-z_i}^{z} \frac{1}{z_i} dz_i \]

١١

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + h_1 \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٩

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \alpha \frac{\partial w_{01}}{\partial x} + \gamma \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٤

\[\int_{0}^{t} (\Delta K - \Delta U + \Delta W_{ext}) dt = 0 \]

١٠

\[\int_{0}^{t} \int_{(i,t,b,c)} \int_{x}^{d} \left(\int_{y}^{e} \int_{z}^{f} \right) \]

١٠

\[\Delta u = \int_{i}^{t} \int_{(b,c)} \int_{x}^{d} \left(\int_{y}^{e} \int_{z}^{f} \right) \]

١٠

\[\Delta w_{ext} = \int_{i}^{t} \int_{(b,c)} \int_{x}^{d} \left(\int_{y}^{e} \int_{z}^{f} \right) \]

١٠

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + h_1 \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٤

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \alpha \frac{\partial w_{01}}{\partial x} + \gamma \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٤

\[\Delta p = -\beta_a \left(\frac{\partial^2 w_{01}}{\partial x^2} + \frac{h_1}{2} \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) - g_a \left(\Delta w_{01} + h_1 \frac{\partial w_{01}}{\partial x} + \frac{h_2}{2} \frac{\partial^2 w_{01}}{\partial y^2} \right) \]

١٤
4-4 حل معادلات حاکم
در این بخش دو نوع مدل کامپیوتری سری ویبراسیون معادلات حاکم بر روی رومی و هسته، در اینجا معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود.

برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

4-3 تحلیل کامپیوتر
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

4-1 تحلیل کامپیوتر
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

5-1 تحلیل آزاد صفحه ساندویچی مورد به روش معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

5-2 انتخاب معادلات حاکم بر لیور یاسانی و سیستم واردبندی
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

5-3 انتخاب معادلات حاکم بر لیور یاسانی و سیستم واردبندی
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

6-1 مدل ماتریاسی
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

6-2 مدل ماتریاسی
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

6-3 مدل ماتریاسی
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]

6-4 مدل ماتریاسی
برای دسترسی به لیست کامل معادلات حاکم بر لیور یاسانی و سیستم واردبندی استفاده می‌شود:

\[
\begin{align*}
\mathbf{u}^{(0)} &= \mathbf{u}^{(0)} \\
\mathbf{v}^{(0)} &= \mathbf{v}^{(0)} \\
\mathbf{w}^{(0)} &= \mathbf{w}^{(0)}
\end{align*}
\]
Table 5 Material properties of a composite sandwich panel with honeycomb core

<table>
<thead>
<tr>
<th>E_{F}</th>
<th>E_{R}</th>
<th>E_{T}</th>
<th>G_{FR}</th>
<th>G_{FT}</th>
<th>G_{RT}</th>
<th>t_{H}</th>
<th>t_{C}</th>
<th>t_{R}</th>
<th>t_{T}</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2</td>
<td>3.2</td>
<td>3.2</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.32</td>
<td>0.32</td>
<td>0.49</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table 6 Comparing the dimensionless buckling load of the laminated sandwich panel with honeycomb core

<table>
<thead>
<tr>
<th>N_{cr}</th>
<th>a/h</th>
<th>t_{H}</th>
<th>t_{C}</th>
<th>t_{R}</th>
<th>t_{T}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>0.100</td>
<td>0.075</td>
<td>0.050</td>
<td>0.025</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Table 3 Comparing dimensionless natural frequencies of a composite sandwich panel with cross ply lay-up

<table>
<thead>
<tr>
<th>f_{NL}</th>
<th>f_{f}</th>
<th>f_{s}</th>
<th>f_{E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.28</td>
<td>14.74</td>
<td>14.27</td>
<td>14.05</td>
</tr>
<tr>
<td>28.69</td>
<td>26.83</td>
<td>26.31</td>
<td>25.88</td>
</tr>
<tr>
<td>30.01</td>
<td>27.53</td>
<td>27.04</td>
<td>26.52</td>
</tr>
<tr>
<td>38.86</td>
<td>35.60</td>
<td>34.95</td>
<td>34.32</td>
</tr>
</tbody>
</table>

Table 4 Comparing dimensionless natural frequencies of a composite sandwich panel with angle ply lay-up

<table>
<thead>
<tr>
<th>f_{NL}</th>
<th>f_{f}</th>
<th>f_{s}</th>
<th>f_{E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.09</td>
<td>15.53</td>
<td>15.32</td>
<td>15.07</td>
</tr>
<tr>
<td>28.93</td>
<td>27.36</td>
<td>27.09</td>
<td>26.82</td>
</tr>
<tr>
<td>28.93</td>
<td>27.36</td>
<td>27.09</td>
<td>26.82</td>
</tr>
<tr>
<td>38.76</td>
<td>36.93</td>
<td>36.26</td>
<td>35.82</td>
</tr>
</tbody>
</table>
6-1 بررسی اثر استاتیک دومه‌داری مواد فلزی بر ضخامت پنل بر روی پایش کمان

دموهوره پنل ساندویچی مربوط به نوع مواد و نسبت برش اخیر تا ماده و نسبت ضخامت در بر پوشش دهکده دام و کنترل شدکار در دو جهت پیکان‌های فرضی دهی است تا همچنین نیروی کمان در هر دو پایه پیکان فرضی دشته است. نیروی کمند به سه لایه لاچیوی مختلف متفاوت است. لایه زاها وی در شکل 3 نشان داده شده است. نسبت برش دومه‌داری پنل ساندویچی برای سه لاچیوی مختلف نشان داده شده است. همان‌طور که شکل 3 نشان می‌دهد با افزایش نسبت برش عرض پنل برای هر لاچیوی مختلف نیروی کمان بیشتر کاهش پیدا می‌کند. همچنین شکل 3 نشان می‌دهد که سبب نیروی کمان بیشتر نیروی کمان بیشتر است.

جدول 7. ویژگی‌های استاتیکی برای پنل مونتاژی

<table>
<thead>
<tr>
<th>a</th>
<th>b/a</th>
<th>پنج</th>
<th>سه‌تایی</th>
<th>دو‌تایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>0.5</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
<tr>
<td>3/1</td>
<td>0.33</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
<tr>
<td>4/1</td>
<td>0.25</td>
<td>کاهش</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
</tbody>
</table>

جدول 8. مقایسه نیروی در این شیب برای پنل مونتاژی

<table>
<thead>
<tr>
<th>a/b</th>
<th>ایندکس</th>
<th>نیروی توری</th>
<th>نیروی توری</th>
<th>نیروی توری</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>44.75</td>
<td>39.2</td>
<td>160.60</td>
<td>151.5</td>
</tr>
<tr>
<td>0.33</td>
<td>54.6</td>
<td>52.7</td>
<td>222.7</td>
<td>206.1</td>
</tr>
<tr>
<td>0.25</td>
<td>58.39</td>
<td>52.9</td>
<td>282.25</td>
<td>266.6</td>
</tr>
<tr>
<td>0.2</td>
<td>141.88</td>
<td>136.3</td>
<td>684.06</td>
<td>645.9</td>
</tr>
</tbody>
</table>

جدول 9. نیروی در این شیب برای پنل مونتاژی

<table>
<thead>
<tr>
<th>a/b</th>
<th>a/b</th>
<th>a/b</th>
<th>a/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.25</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.33</td>
<td>2.65</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.25</td>
<td>3.35</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 10. ویژگی‌های استاتیک بازکردنی برای پنل مونتاژی

<table>
<thead>
<tr>
<th>a/b</th>
<th>پنج</th>
<th>سه‌تایی</th>
<th>دو‌تایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>0.5</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
<tr>
<td>3/1</td>
<td>0.33</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
<tr>
<td>4/1</td>
<td>0.25</td>
<td>کاهش</td>
<td>کاهش</td>
</tr>
</tbody>
</table>
6-3 - بررسی اثر زاویه الاف بر روی پاسخ کمان دومدوره‌پنل ساندویچی مکب

در این بخش، بررسی اثر زاویه الاف بر روی فشار کمان دومدوره‌پنل ساندویچی مکب مربوط به شرایط مزیتی ساده و نسبت ضخامت روبرو به مکب از 0.06 و نسبت طول به ضخامت کل 9 بررسی می‌شود. موارد باز رگی طیار رویه‌های مکب و هنگام در حال ورود به باد است. به دنبال گزارش نیروی کمان برای هر دو حالت پنل فشار کمان دومدوره‌پنل ساندویچی مکب با لایه پنلی به دست آمده، در نهایت نیروی کمان مربوط به هر چهار لایه پنل ساندویچی مکب است.

6-4 - بررسی اثر تغییر خواص مواد رویه‌ها بر روی پاسخ پنل ساندویچی مکب

در این بخش بررسی اثر تغییر خواص مواد رویه‌ها بر روی پاسخ فلار پنل ساندویچی مکب برای لایه پنلی مشخص می‌شود. از نظر زاویه الاف، مکب از 0/90/0/0 به 0/90/0/90 و 90/90/0/0. در این بخش، نسبت ضخامت روبرو به مکب از 0.06 و نسبت طول به ضخامت کل 9 بررسی می‌شود.

Fig. 5 Variation of damping (ζ) with the dimensionless critical dynamic pressure for $E_1/E_1 = 3$

Fig. 6 Variation of dimensionless critical dynamic pressure with the elastic modulus ratio of the face sheets

6-5 - بررسی اثر نسبت مدول الستیسیتی رویه‌ها بر روی پاسخ فلار پنل ساندویچی مکب

در این بخش، بررسی اثر نسبت مدول الستیسیتی رویه‌ها بر روی پاسخ فلار پنل ساندویچی مکب انجام می‌شود. از نظر زاویه الاف، مکب از 0/90/0/0 به 0/90/0/90 و 90/90/0/0. در این بخش، نسبت ضخامت روبرو به مکب از 0.06 و نسبت طول به ضخامت کل 9 بررسی می‌شود.

Fig. 4 Variation of dimensionless buckling load with the fiber angle

شكل 5 نمودار نسبت فشار دیمانیکی به بعد با نسبت مدول الستیسیتی رویه‌ها

شکل 6 نمودار نسبت شدت خدر شار دیمانیکی به بعد با نسبت مدول الستیسیتی رویه‌ها
Table 10 Material properties of a sandwich panel

<table>
<thead>
<tr>
<th>Material</th>
<th>E_1 (GPa)</th>
<th>E_2 (GPa)</th>
<th>G_12 (GPa)</th>
<th>G_{23} (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>70</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>Core/45%</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>Core/45%/45%</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>[Aluminium/Core]</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>[Steel/Core]</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
</tbody>
</table>

Fig. 8 Variation of dimensionless critical dynamic pressure with the thickness ratio of the top to the bottom face sheets.

Fig. 9 Variation of dimensionless critical dynamic pressure with the thickness ratio of the bottom to the top face sheets.

6-7 Parameter estimates that were used for the dynamic analysis:

- h_i/h_b (height ratio of the bottom to the top face sheets)
- E_i/E_b (ratio of Young's modulus of the bottom to the top face sheets)
- v_i (poisson's ratio of the bottom to the top face sheets)
- G_{ij} (shear modulus of the bottom to the top face sheets)

Fig. 7 Variation of dimensionless critical dynamic pressure with the face sheets to the core elastic modulus ratio.

Fig. 8 Variation of dimensionless critical dynamic pressure with the thickness ratio of the top to the bottom face sheets.

Fig. 9 Variation of dimensionless critical dynamic pressure with the thickness ratio of the bottom to the top face sheets.

Table 10 material properties of a sandwich panel

<table>
<thead>
<tr>
<th>Material</th>
<th>E_1 (GPa)</th>
<th>E_2 (GPa)</th>
<th>G_{12} (GPa)</th>
<th>G_{23} (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>70</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>Core/45%</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>Core/45%/45%</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>[Aluminium/Core]</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
<tr>
<td>[Steel/Core]</td>
<td>60</td>
<td>10.34</td>
<td>6.805</td>
<td>6.205</td>
</tr>
</tbody>
</table>
1. H. H. Ibrahim, H. H. Yoo, Nonlinear flutter oscillations of composite shallow shells subject to aerodynamic and thermal

\[L_{14} = -\gamma_{14}^{1} \frac{\partial^2}{\partial x^2} - \gamma_{14}^{2} \frac{\partial^2}{\partial y^2} - 2\gamma_{14}^{3} \frac{\partial^2}{\partial x \partial y} \]

\[h_{14} = \int \rho \rho_{\theta} d\xi; \quad n = 0.1, 2, 3 \]

\[n_{k} = \frac{h_{14}}{2} \int (1, x_{k}, x_{k}^2) dz \]

\[\text{ضخامت روبه‌ی یکدینه در دایره‌ای ماتریس \(A \) برای تحلیل فشار فلتر عبارت از:} \]

\[L_{15} = \frac{\partial^2}{\partial y^2} - \gamma_{15}^{1} \frac{\partial^2}{\partial x^2} + 2\gamma_{15}^{3} \frac{\partial^2}{\partial x \partial y} \]

\[h_{15} = \frac{h_{14}}{2} \int (1, x_{k}, x_{k}^2) dz (i, j = 1, 2, 3, 6) \]

\[L_{16} = \frac{\partial^2}{\partial y^2} - \gamma_{16}^{1} \frac{\partial^2}{\partial x^2} + 2\gamma_{16}^{3} \frac{\partial^2}{\partial x \partial y} \]

\[L_{17} = \frac{\partial^2}{\partial y^2} - \gamma_{17}^{1} \frac{\partial^2}{\partial x^2} + 2\gamma_{17}^{3} \frac{\partial^2}{\partial x \partial y} \]

\[L_{18} = \frac{\partial^2}{\partial y^2} - \gamma_{18}^{1} \frac{\partial^2}{\partial x^2} + 2\gamma_{18}^{3} \frac{\partial^2}{\partial x \partial y} \]

\[h_{18} = \frac{h_{14}}{2} \int (1, x_{k}, x_{k}^2) dz \]

\[\text{یکدینه در دایره‌ای ماتریس \(A \) برای تحلیل فشار.} \]

\[\text{در این دو سری زیراً که در مخزن کیست برای سازی فلتر دایره‌ای ماتریس قرار دارد.} \]

\[\text{برای پایین‌ترین مقدار پایین‌ترین مقدار در نوین.} \]

\[\text{در سوال 8 مقدار نهایی در مقدمت

[55] A. Sankar, S. Natarajan, M. Haboussi, K. Ramajeyathilagam, M.