A 3D Unpressurized Model for Non Linear Dynamic Analysis of Human Aortic Valve in Dynamic Condition

Alireza Noamani, Vahid Dehghan Niestanak, Masoud Asgari*
Faculty of Mechanical Engineering, Khajeh Nasir Toosi University of Technology, Tehran, Iran
* P.O.B. 1999-19395, Tehran, Iran, asgari@kntu.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 24 November 2015
Accepted 23 January 2016
Available Online 09 March 2016

Keywords:
Aortic Valve
Finite Element Method
Unpressurized Model
Cardiovascular Biomechanics
Hyperelastic Constitutive Modeling

ABSTRACT
Aortic Valve simulation remains a controversial topic as a result of its complex anatomical structure and mechanical characteristics such as material properties and time-dependent loading conditions. This study aims to integrate physiologically important features into a realistic structural simulation of the aortic valve. A finite element model of the natural human aortic valve was developed considering Linear Elastic and Hyperelastic material properties for the leaflets and aortic tissues and starting from the unpressurized geometry. It has been observed that although similar stress-strain patterns were generated on Aortic Valve for both material properties, the hyperelastic nature of valve tissue can distribute stress smoothly and with lower strain during the cardiac cycle. The deformation of the aortic root can play a prominent role as its compliance changed significantly throughout cardiac cycle. Furthermore, dynamics of the leaflets can reduce stresses by affecting geometries. The highest values of stress occurred along the leaflet attachment line and near the commissure during diastole. The effects of high +G acceleration on the performance of valve, valve opening and closing characteristics, and equivalent Von Mises stress and strain distribution are also investigated.

Please cite this article using:
Hyperelastic
Dummy Model
Cardiovascular tissue

Table 1: Tension-stress relationships

<table>
<thead>
<tr>
<th>Mode</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9% strain</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>12% strain</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>15% strain</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

5. Implicit

6. Explicit

7. Parallelization

8. Multiple Processors

9. Time Step
کرنژک انتخابی قابل پیگذاری بی‌مزایی را در آن ها ایجاد می‌شود. با این که مقدار نسبی همبستگی، خواص ماده، شرایط مرزی و بازگشتی است، در این پژوهش این ماده به منظور مدل گیری به نتایج که با داده‌های فیزیولوژیکی مطالعه داده شده‌اند، مشابه است.

جدول 2: مطالعه سه‌بعدی اجرای مدل‌های انتخابی

<table>
<thead>
<tr>
<th>مدل انتخابی</th>
<th>انتخابی</th>
<th>دهیه</th>
<th>تحلیل</th>
<th>انتخابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>شکست دینامیک</td>
<td>7.6</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>10.6</td>
<td>شکست انتخابی</td>
<td>7.8</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>-</td>
<td>دینامیک</td>
<td>10.9</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>10.6</td>
<td>شکست دینامیک</td>
<td>7.6</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>-</td>
<td>دینامیک</td>
<td>10.9</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>7.6</td>
<td>شکست دینامیک</td>
<td>7.6</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>10.9</td>
<td>شکست دینامیک</td>
<td>10.9</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>10.9</td>
<td>شکست دینامیک</td>
<td>10.9</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>7.6</td>
<td>شکست دینامیک</td>
<td>7.6</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

فیگور 1: مدل‌های انتخابی

![مدل‌های انتخابی](image_url)

معادله 1: تغییرات تنش

\[
S_{ij} = \frac{\partial W}{\partial C_{ij}} = 2 \frac{\partial W}{\partial C_{ij}}
\]

معادله 2: تغییرات تنش

\[
W = C_{ij}(I_1 - 3) + C_{ij}(I_2 - 3) + \frac{1}{2} (I_3 - 1)^2
\]

معادله 3: تغییرات تنش

\[
\sigma_{ij} = \frac{\partial W}{\partial C_{ij}}
\]

معادله 4: تغییرات تنش

\[
C_{ijkl} = \frac{\partial^2 W}{\partial \epsilon_{ij} \partial \epsilon_{kl}}
\]
در این مطالعه از دو مواد فیبرولوژیک اصلی استفاده شد که شامل گروه‌هایی است که از این مواد ساخته شده‌اند.

جدول 3

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
<th>داده‌های تجربی [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_b</td>
<td>12.5</td>
<td>11.3-14</td>
</tr>
<tr>
<td>H</td>
<td>18</td>
<td>12.43-19.88</td>
</tr>
<tr>
<td>H_s</td>
<td>7</td>
<td>5.56-9.94</td>
</tr>
<tr>
<td>R_c</td>
<td>12</td>
<td>7.91-15.4</td>
</tr>
<tr>
<td>β</td>
<td>7.5°</td>
<td>4°-11°</td>
</tr>
<tr>
<td>C_v</td>
<td>4.3</td>
<td>3.842-4.76</td>
</tr>
<tr>
<td>h_s</td>
<td>25</td>
<td>13.56-28.28</td>
</tr>
<tr>
<td>d_s</td>
<td>18</td>
<td>12.43-23.94</td>
</tr>
</tbody>
</table>

ماهیت تغییر

- مقدار C_{10}: 0.5516
- مقدار C_{41}: 0.1579
- مقدار d: 3e-8

شکل 3

![شکل 3](https://example.com/image3.png)

در این شکل مقادیر فیبرولوژیکی اثرات در مطالعات بینی قرار دارد.

شکل 4

![شکل 4](https://example.com/image4.png)

جدول 4

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}</td>
<td>0.5516</td>
</tr>
<tr>
<td>C_{41}</td>
<td>0.1579</td>
</tr>
<tr>
<td>d</td>
<td>3e-8</td>
</tr>
</tbody>
</table>

شکل 2

![شکل 2](https://example.com/image2.png)

شکل 1

![شکل 1](https://example.com/image1.png)
4 - 4: با قابلیت یافته بودن در این باره درک و مدل ایب در مدل تحقیق گذشته نشان داده بود که در فرآیند از لحاظ تحقیق نقش به درک اثرات این روش در مطالعه می‌تواند به راحتی این روش در مقایسه با نتایج این تحقیق است. به گونه‌ای که می‌توان یک روش دقیق و پایان‌آور فرد هدف فرد به فرد می‌تواند با استفاده از روش‌های مختلفی از روش‌های بیپرو بودن و در این روش گردش 4-3-4: بررسی تنش و کرنش در دو حالت الاستیک خلو و هایپرالاستیک غیرخطی از مراحل مهم شیمی‌سازی عضوی این تست که آب‌های غیرخطی و هایپرالاستیک غیرخطی قادرو دسته‌بندی نیستند. بدست این انجام پذیری تنش در لحاظ فیزیولوژیک است و در حالت بی‌کنترل این نتایج به‌طور مثال فرد می‌گردد.

Table 5 Valve Opening and Closing Characteristics (mm, ms)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Linear Material</th>
<th>Non-Linear Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-closed</td>
<td>11.5±7.5</td>
<td>14.5</td>
</tr>
<tr>
<td>A-closed</td>
<td>20.9±4.2</td>
<td>22.3±2.1</td>
</tr>
<tr>
<td>D-open</td>
<td>329±6.3</td>
<td>330±1.2</td>
</tr>
<tr>
<td>A-open</td>
<td>12.5±6.6</td>
<td>13.1±3.6</td>
</tr>
<tr>
<td>D-closing</td>
<td>39.5±5.5</td>
<td>40.9±2.8</td>
</tr>
<tr>
<td>A-closing</td>
<td>32.4±11.4</td>
<td>34.7±6.2</td>
</tr>
</tbody>
</table>

5: Echocardiography Images
6: Doppler Techniques
7: Ejection Fraction
8: Slow Closing Displacement
Table 6 Maximum Opening and Closing Stress for Linear Elastic and Hyperelastic models (Pa)

| مداومت (Pa) | طیف نشنا (Pa) | فشار مداومت (Pa) | مداومت در حالت های تخصصی و مداومت در حالت H
مدیریت مدل سه بعدی اصلاح شده بی‌درنگ فشار براي تعیین رفتار ساختاری غیرخطی در جریه آئورت(Q: انسان در ضریب دیタンمیک)

مقادیر میانگین سرعت لیفت هسته‌ای این تکه قابل ذکر است که نتایج دیتانمیک حاصل از مدل سایر صورت‌گرایی به شرایط زمانی بارگذاری اعمال شده به درجه‌بندی ویژه‌ای است. این مطالعه شامل عامل عامل عامل بارگذاری این استادارد درجه‌بندی مطالعه است نتایج حاصل از هر مطالعه در این زمان واتسکی سه‌گانه به شکل هدفی دریچه و ناحیه بارگذاری دارد که می‌تواند نشان به نتایج متغیرانی گردد.

5- برسی رفتار دریچه چشمه

بنابر اساس در مقاله‌هایی که جمله تخصصی‌های ترفنگی تحت شاخص‌ها بسیار بی‌زیست قرار می‌گیرد وی به آمار بالای این اسبیدکان در تحقیقات نیاز به بهبود شرایط این اتوپاسیک هاست. برای این مهم نیازمند مطالعه دقیق تأثیر این تداخلات با عضلانی بدنی می‌باشد بر اساس مطالعه صورت گرایی [43] در این رابطه تداخل به خودرو و تجاری توسط روش اجزاء محدود غیر خطی و همچنین به صورت کنترل شده در آزمایشگاه در

![Fig. 9 Leaflets Velocity vs. Time for Linear Elastic and Hyperelastic models](image1)

شکل 9 تغییرات سرعت لیفت در دو حالات استیکی خلفی و هایپر استیکی خلفی

![Fig. 10 Curve of the chest acceleration for Crash Moment [43]](image2)

شکل 10 نمودار شتاب برحسب زمان قسمت زنده در هنگام تصادف [43]
متغیرات پراکندگی مارپیچه‌های مربوط به باز و بسته شدن دریچه و شرايط شبیه‌سازی تشن دهنده طبقه‌بندی دست نتایج به دست آمده از این پژوهش با مطالعات پیشین است، رفتار غیرخطی ماهی تأثیر قابل ملاحظه‌ای بر روی پایان تشک ليف نشان دهد در طول سیکل قلبی دارد. از آنجا که محل فرارگی تشن مکانیکی در دو حالت مدارسازی ماهی مشابه است و تنها مقدار آن ها متقابلا با جدول 6 و 7 اختلاف دارند در تغییرهای کامی و وقتی که مقدار دقیق تا جدول 6 و 7 اختلاف دارند در تغییرهای کامی و وقتی که مقدار دقیق

جدول 8 برمایه‌های بی‌باز و بسته شدن دریچه در سیکل عادی و سیکل تحت شتاب

<table>
<thead>
<tr>
<th>زمان (س)</th>
<th>سرعت (سیکل/ثانیه)</th>
<th>تعداد</th>
<th>تنش (سیکل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>302</td>
<td>17.19</td>
<td>62</td>
<td>67</td>
</tr>
<tr>
<td>297</td>
<td>16.55</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>

جدول 9 تنش و تنش مکانیکی در دو سیکل عادی و تحت شتاب

<table>
<thead>
<tr>
<th>کنتین</th>
<th>تنش مکانیکی</th>
<th>کنتین</th>
<th>تمشکا</th>
<th>زمان (س)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مکانیکی</td>
<td>مکانیکی</td>
<td>مکانیکی</td>
<td>مکانیکی</td>
<td>مکانیکی</td>
</tr>
<tr>
<td>بسته شدن</td>
<td>بازی</td>
<td>بسته شدن</td>
<td>بازی</td>
<td></td>
</tr>
<tr>
<td>بسته</td>
<td>بازی</td>
<td>بسته</td>
<td>بازی</td>
<td></td>
</tr>
<tr>
<td>سیکل عادی</td>
<td>سیکل تحت شتاب</td>
<td>سیکل عادی</td>
<td>سیکل تحت شتاب</td>
<td></td>
</tr>
<tr>
<td>695300</td>
<td>0.347</td>
<td>630600</td>
<td>0.330</td>
<td></td>
</tr>
<tr>
<td>757900</td>
<td>0.397</td>
<td>632000</td>
<td>0.331</td>
<td></td>
</tr>
</tbody>
</table>

شکل 12 نرخی از مفاد عادی و ژل (Pa) در دو حالت کامل بار و کارکنان و مقایسه حالت عادی (سیستم شیمیایی) و حالت تحت شتاب (سیستم مکانیکی).

توجه نیست که این تکنیکی نیاز دارد این هاو که موثر مقدار کنتین در حالت باز بیش از حالت بسته است. توزیع نرخ مفاد عادی و ژل می‌شود در شکل 12 ارده شد است.

شکل 13 شکل پیشان دریچه در هر حال اسپیک خلی (سیستم شیمیایی) و هایپر-اسپیک غیرخطی (سیستم مکانیکی).

شکل 14 قلبی دریچه در هر حال اسپیک خلی (سیستم شیمیایی) و هایپر-اسپیک غیرخطی (سیستم مکانیکی).

شکل 15 قلبی دریچه در هر حال اسپیک خلی (سیستم شیمیایی) و هایپر-اسپیک غیرخطی (سیستم مکانیکی).

شکل 16 قلبی دریچه در هر حال اسپیک خلی (سیستم شیمیایی) و هایپر-اسپیک غیرخطی (سیستم مکانیکی).
A compliant dynamic FEA model of the aortic valve, 12th IFToMM World Congress, Besancon (France), June 18-21, 2007.

FEA Model of the aortic valve, 12th IFToMM World Congress, Besancon (France), June 18-21, 2007.

http://www.solidworks.com

Journal of the mechanical behavior of biomedical materials

M. Hassan, M. Hamdi, A. Noma, The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a Guinea pig heart.

http://www.solidworks.com

Ranga, A., Monragn, R., Biadlah, Y., Cartier, R., A Compliant dynamic FEA Model of the aortic valve, 12th IFToMM World Congress, Besancon (France), June 18-21, 2007.

