پیاده‌سازی کنترل و ضابط یک ربات پرنده هشت مخه در یک دریای مسیر خودکار

سید جمال الدین حدادی ۱، پرام زرافشان ۲

۱- دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خواجه نصیر‌الدین طهران، تهران، ایران
۲- دانشکده مهندسی مکانیک مهندسی، دانشگاه صنعتی خواجه نصیر‌الدین طهران، تهران، ایران

چکیده

یک ربات پرنده‌ای که به وسیله یک سیستم پیشرفته کنترل می‌شود، می‌تواند به عنوان یک ربات خودکار نیز نیافته شود این ربات یک سیستم بی‌سایزی که مانند انرژی درجه حرارت India.

abstract

Implementation of Attitude Control for an Octorotor Flying Robot in an Autonomous Trajectory Tracking

Seyed Jamal Hadadi, Payam Zarafshan*

1- Department of Electrical and Automation Systems, University of Federal de Santa Catarina, Florianopolis, Brazil
2- Department of Agro-Technology, University of Tehran, Tehran, Iran
* P.O.B. 3391653755, Tehran, Iran, p.zarafshan@ut.ac.ir

Article Information

Original Research Paper
Received 06 March 2016
Accepted 30 May 2016
Available Online 13 July 2016

Keywords:
Controller
Attitude Controller
Trajectory Tracking
Sensor

abstract

An Aerial Robot or Unmanned Aerial Vehicle (UAV) is an aerial vehicle that provides its flight condition using aerodynamic forces. This vehicle can be named as an autonomous robot. This robot is an under-actuated system and is inherently unstable. Thus, the control of this nonlinear system is a problem for both practical and theoretical interest. So, the goal of this research is to compare it with highly nonlinear dynamic system of OCTOTOR which is difficult to control in many cases and causes instability in this Unmanned Aerial Vehicle (UAV). At first, the structure of Octorotor is studied in this paper in order to increase power, better ability to carry a load and to increase resistance into the distribution. Also, the electronics and mechanics of this robot are studied in some sections. Then, in the following, in order to control attitude of robot with introduction of dynamic system, one of the most common implemented controllers is applied on this robot. Initially, this process is done on the dynamic model of robot by Matlab/Simulink software and finally, implementation of this controller is applied on a fabricated Octorotor during a real flight in autonomous trajectory tracking in outdoor environment. Finally, the study of sensors results is also shown.

مقدمه

1- مقدمه

آخیرا تحقیق و پژوهش بر روی پرنده‌های بدون سرنشین مطرح رفته است که عموما بر روی بانکی و حفاظت در زمینه‌های هوافضا و کنترل تبدیل شده است. پرنده‌های بدون سرنشین به یک ربات خودکار می‌گویند که سوپر فایبر به طور کامل خودکار است و به وسیله سیستم کنترل از طریق سیستم‌های داخلی و خارجی کنترل می‌شوند.

References:

3- مدل سازی دینامیکی ربات پرندن

برای مدل‌سازی دینامیکی ربات پرندن نهایتی ابتدا ساختار شش‌پره ای را با استفاده از روابط نیوتن و رویال بین کرده و سپس موترهای استفاده شده در این مدل سازی مگردان سپس با ترکیب این دو قسمت، مدل کلی پره رایت ایندی نیز طراحی کرد. اگرچه رابطه‌ای بین آرایه و توان‌های دینامیکی چیست، با توجه به اینکه از روابط دینامیکی جسم صلب با شش چرخ آزادی‌را مطابق کرده و سپس از این ارتباط برای مدل سازی استفاده شد. کل مدل دینامیکی ساختار صلب به سمت می‌آید که تا کنون برای مدل سازی پرندن شده است.

سیستم نهایی رایت استفاده می‌شود به نهایت اطلاعات بدهد مدل سازی اولیه استفاده می‌کند. با حل مدل‌سازی اولیه دینامیکی پرندن مدل دینامیکی پرندن مناسب به سمت می‌آید که تا کنون برای مدل سازی پرندن شده است.

اثر نهایی رایت استفاده می‌شود به سمت می‌آید که تا کنون برای مدل سازی پرندن شده است.

\[\theta_g = R \theta_b \] (1)

\[\theta_T = T \theta_b \] (2)

که در آن \(\theta_g \) و \(\theta_T \) به ترتیب بردارهای موقعیت و بردار متفاوتی است. سرعت زاویهی نسبت به خاکستر است. به عنوان مثال \(\theta_0 \) به‌طور مشابه به ترتیب بردار مفهومی در اینجا برای \(\theta \) و \(T \) استفاده شده است. انتقال بویه با استفاده از روابط (1) به صورت زیر تعریف می‌شود:

\[R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & CTh & -Sth \\ 0 & STh & CTh \end{bmatrix} \] (3)

\[R_y = \begin{bmatrix} CTh & 0 & STh \\ 0 & 1 & 0 \\ -Sth & 0 & CTh \end{bmatrix} \] (4)

\[R_z = \begin{bmatrix} CSh & -Ssh & 0 \\ Ssh & CSh & 0 \\ 0 & 0 & 1 \end{bmatrix} \] (5)

\[R = R_x R_y R_z \] (6)

\[\begin{bmatrix} CBh & Sph & -Cph & -Spb & -Sph & +Cpb \\ Sbh & -Cph & Cpb & Sph & +Cph & -Spb \\ Cbh & Sph & -Cph & -Spb & -Sph & +Cpb \end{bmatrix} \] (7)

\[T = \begin{bmatrix} \sin \theta \cos \theta \\ \cos \theta \sin \theta \\ \cos \theta \cos \phi \end{bmatrix} \] (8)

که در رابطه فوق \(\theta \) و \(\phi \) به ترتیب زاویه‌ی رول، پیچ و یاو می‌باشد. \(C \) و \(S \) به ترتیب جاگردان \(\cos \theta \) و \(\sin \theta \) می‌باشد. \(m \) به استفاده دینامیکی حرکت یک ربات پرندن تلقی می‌شود.

\[m \left(\dot{\omega}_B + \omega_B \times (\dot{x}_B) \right) = F_B \] (9)

\[I \omega_B + \omega_B \times (I \omega_B) = T \] (10)

با توجه به توزیع متفاوت جرم ربات پرندن تلقی می‌شود، مهربان مدل یک اپراتور دینامیکی کاملاً مشخص می‌شود. این تقاطع باعث می‌شود مدل دینامیکی ربات به‌طور مفهومی در این مورد سیستم را جاگردان \(\omega_B \) کمیب. با حساب حل مدل‌سازی اولیه دینامیکی رابطه اینها اطلاعات بدست می‌آورد. رابطه (10) به صورت زیر تعریف می‌شود:

\[\omega_B = \omega_B \] (10)
شکل 3 مفهوم دینامیکی ربات پرده هشتم‌محله

شکل 4 چکیده دینامیکی ربات پرده هشتم‌محله

\[
\begin{align*}
\dot{\theta} &= \left(\frac{I_y - I_z}{I_x} \right) \dot{\phi} + \frac{J_{rr}}{I_x} \dot{\phi} \omega_y + \frac{U_y}{I_x} \\
\dot{\phi} &= \left(\frac{I_z - I_y}{I_x} \right) \dot{\theta} + \frac{J_{rr}}{I_x} \dot{\theta} \omega_z + \frac{U_z}{I_x} \\
\beta &= \left(\frac{I_x - I_z}{I_y} \right) \dot{\gamma} + \frac{J_{rr}}{I_y} \dot{\gamma} \omega_x + \frac{U_x}{I_y} \\
\dot{\chi} &= \frac{1}{m} (C_{\theta} \phi + S_{\theta} \phi \beta) U_1 \\
\dot{\psi} &= \frac{1}{m} (C_{\beta} \phi x + C_{\beta} \phi y \psi) U_2 \\
\dot{z} &= \frac{1}{m} (C_{\phi} \phi x + S_{\phi} \phi y \psi) U_3 \\
\end{align*}
\]

(10)

که در آن \(J_{rr} \) مجموع فیزیکی حول محور مخلوط (که مقداری از تهیه بر اساس استحکام تغییر در \(\omega_x \) برای بازیابی مکان‌های اکثریت هر مخلوق که فضای همگام بر روی پرده استفاده می‌کند) \(\omega_x \) را می‌گیرد.

\[
\begin{align*}
\omega_y &= -\omega_z - 2 \omega_x - 3 \omega_z - 4 \omega_x - 5 \omega_x - 6 \omega_x - 7 \omega_x - 8 \omega_x - 9 \omega_x - 10 \omega_x - 11 \omega_x - 12 \omega_x - 13 \omega_x - 14 \omega_x - 15 \omega_x - 16 \omega_x - 17 \omega_x - 18 \omega_x - 19 \omega_x - 20 \omega_x - 21 \omega_x - 22 \omega_x - 23 \omega_x - 24 \omega_x - 25 \omega_x - 26 \omega_x - 27 \omega_x - 28 \omega_x - 29 \omega_x - 30 \omega_x - 31 \omega_x - 32 \omega_x - 33 \omega_x - 34 \omega_x - 35 \omega_x - 36 \omega_x - 37 \omega_x - 38 \omega_x - 39 \omega_x - 40 \omega_x - 41 \omega_x - 42 \omega_x - 43 \omega_x - 44 \omega_x - 45 \omega_x - 46 \omega_x - 47 \omega_x - 48 \omega_x - 49 \omega_x - 50 \omega_x - 51 \omega_x - 52 \omega_x - 53 \omega_x - 54 \omega_x - 55 \omega_x - 56 \omega_x - 57 \omega_x - 58 \omega_x - 59 \omega_x - 60 \omega_x - 61 \omega_x - 62 \omega_x - 63 \omega_x - 64 \omega_x - 65 \omega_x - 66 \omega_x - 67 \omega_x - 68 \omega_x - 69 \omega_x - 70 \omega_x - 71 \omega_x - 72 \omega_x - 73 \omega_x - 74 \omega_x - 75 \omega_x - 76 \omega_x - 77 \omega_x - 78 \omega_x - 79 \omega_x - 80 \omega_x - 81 \omega_x - 82 \omega_x - 83 \omega_x - 84 \omega_x - 85 \omega_x - 86 \omega_x - 87 \omega_x - 88 \omega_x - 89 \omega_x - 90 \omega_x - 91 \omega_x - 92 \omega_x - 93 \omega_x - 94 \omega_x - 95 \omega_x - 96 \omega_x - 97 \omega_x - 98 \omega_x - 99 \omega_x - 100 \omega_x
\end{align*}
\]

(11)

همچنین مدل فلکه‌های اکتول بر روی پرده هشتم‌محله در شکل 3 بوسیله یک نمودار دینامیکی ارائه شده و در جدول 1 در

\[
\begin{align*}
U_1 &= b(a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8) \\
U_2 &= lb(-a_1 + a_2 - a_3 + a_4 + a_5 - a_6 + a_7 - a_8) \\
U_3 &= d(-a_1 + a_2 + a_3 - a_4 - a_5 + a_6 - a_7 + a_8) \\
&- a_9)
\end{align*}
\]

(12)

مفهوم دینامیکی ربات پرده هشتم‌محله در شکل 4 بوسیله یک نمودار دینامیکی ارائه شده و در جدول 1 در

"-4- طراحی کنترل کندنه

در این بخش، به تری لکش کنترل کنترل غلط طراحی شده برداره می‌شود. همان طور که ذکر شده بود، برای پرده‌های می‌شود که سیستم زیرگزین با شش درجه آزادی یافته شده بود رابطه بین مانور با دو نیروی وضعیت از کنترل کننده حلقه داخلی استفاده می‌شود (شکل 4).

-4- کنترل کننده ناسیون-الگری-استراپ-پدیده

\[
egin{align*}
&u(t) = K_p \phi(t) + K_d \frac{d \phi}{dt} + K_i \int \mathbb{e}(t) \, dt \\
&U(s) = K_p \mathbb{e}(s) + \frac{K_d}{s} \mathbb{e}(s) + K_i \mathbb{e}(s) \\
&u(n) = K_p \mathbb{e}(n) + K_d \mathbb{e}(n) - \mathbb{e}(n-1) \\
&+ K_i \sum_{k=0}^{n-1} \mathbb{e}(k)
\end{align*}
\]

(13)
نمای دارایی تعیین شده است که بلات در محیط شبیه‌سازی آن را دنبال می‌کند. همینطور که در شکل 11 قابل مشاهده است، راب عضوی از الگوی شبیه‌سازی، قرار گرفته است. یک مجموعه کنترل‌کننده تاسیس‌های شبیه‌سازی برای انتخاب آن طراحی شده است. شکل 6 نمایش دهنده سیستم شبیه‌سازی شبیه‌سازی می‌باشد. مدل برنده هسته‌سازی، کنترل‌کننده و هفته‌هایی ماشینی می‌باشد.

شکل 5 ساختار کنترل‌کننده ربات برنده هسته‌سازی

در این قسمت به ترکیب توانایی شبیه‌سازی بدون حضور افتتاحیه برنده می‌پردازیم. انرژی الکتریکی در فاصله رول و پیچ و بازی و بازی مشابه است. ربات در نقطه مصرف کامل پایدار شده است. که این نیاز از اعمال محموله مجله‌های متنوع شبیه‌سازی می‌باشد. همچنین نمایش دهنده صفحه شده جهت کنترل وضعیت ربات برنده هسته‌سازی در محیط شبیه‌سازی می‌باشد. در شکل 7 تصور شده است. ذکر این نکته در این پیش‌بردی بنظر میرسد که تنظیم ضرایب این کنترل‌کننده در دسترس و به روش صنعتی و خلاصه شبیه‌سازی مولودی صورت دیده است که می‌باشد از جدول 1 ارائه شده است. نمایندی کنترل‌کننده 8 و 9 که نتایج حاصل از این شبیه‌سازی می‌باشد. نتایجی در محیط شبیه‌سازی بدست آمده است.

شکل 8 نمایش سیستم 2 در شبیه‌سازی برنده

برای پی بردن به عملکرد کنترل‌کننده طراحی شده که سیستم به شکل

- **Stop (رزگرف‌گیری برای درستی)**
- **Start (شروع)**

شکل 9 نمایش سیستم 3 در شبیه‌سازی

1. Roll
2. Pitch
3. Yaw

شکل 6 دیاگرام کنترل‌کننده ربات برنده

شکل 7 شبکه‌ای شبیه‌سازی مدل دیجی‌بکی ربات برنده هسته‌سازی

شکل 8 نمایش سیستم 4 در شبیه‌سازی برنده

شکل 9 نمایش دهنده سیستم 6 شبیه‌سازی برنده

شکل 10 نمایش دهنده سیستم 6 شبیه‌سازی برنده

شکل 11 نمایش دهنده سیستم 9 شبیه‌سازی برنده
جدول 1 مقادير بارامترهای هندسی، دینامیکی و کنترلی سیستم

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 0.232$ (m)</td>
<td>$b = 3.13 e - 5$</td>
</tr>
<tr>
<td>$d = 9 e - 5$</td>
<td>$m = 1.2$ (kg)</td>
</tr>
<tr>
<td>$l_z = 0.00622$ (kgm2)</td>
<td>$l_y = 0.00622$ (kgm2)</td>
</tr>
<tr>
<td>$I_z = 0.001125$ (kgm2)</td>
<td>$I_T = 154 e - 7$ (kgm2)</td>
</tr>
<tr>
<td></td>
<td>$K_p, K_i, K_d = 1.2, 0.1, 0.10$</td>
</tr>
<tr>
<td></td>
<td>$K_p, K_i, K_d = 1.2, 0.1, 0.10$</td>
</tr>
<tr>
<td></td>
<td>$K_p, K_i, K_d = 5.0, 0.045, 0$</td>
</tr>
</tbody>
</table>

همچنین برای این ربات ساخته شده (شکل 13) در یک ارتفاع تابی از دکمه‌ی حالت در روی ریموت قرار داده و از قبل در کنترل ارتفاع را نمودارهایی بندهماده کنترل کننده به کنترل‌گر در می‌آید. نمایش داده می‌گردد. نمودارهای بیستم، کنترل کننده نمایش گذاری محسوب می‌شود. در هر حالت حرفی در می‌آید، کنترل نمودارهایی که از راهریزی و ضعیفی را به همراه ساختاری می‌شود و این باعث شده که از این راه‌های مربوط نشان دهد.

به طور کلی، هر دوی شکل 11 هری از گزینه‌های کنترلی به کنترل‌گر در می‌آید. نمایش داده می‌گردد. نمایش داده می‌گردد.

- پیاده‌سازی کنترل طراحی شده ربات پرنده

با توجه به این که تمامی اعمال کنترلی در داخل یک مکروکنترل انجام می‌شود، اطلاعات پروری ام از راهنما رول، پیچ و باو و ورودی و خروجی، ارتفاع ورودی و خروجی، هزینه‌های کنترلی، در حفره‌های زمانی، مقدار نویز تمامی اعمال شده به سیستم و سیستم به صورت خروجی در می‌آید. نمایش طوانا وی قابل مشاهده است. به منظور استفاده از پردازشگری و ورودی، پیچ و باو در کنترل کننده کنترل‌گر در می‌آید. نمایش طوانا وی قابل مشاهده است.
سید جمال الدین جداد و پیام زرآفتان

پیادهسازی کنترل و وضعیت یک باتری پرنده هشتم ماهه در یک ربات سیبیر جهان‌نورد

شکل 15 رابطه مسیر در پرواز واقعی ویژه پرنده هشتم ماهه

همانطور که در نمودارهای حاصل از پیادهسازی وضعیت در شکل‌های 16 و 18 بسته امده است، نتایج میان نتایج زاویه وروید و خروجی با تناش فرآیند اندازه‌گیری قابل قبول کنترل که ناسی انتقال خط هدایت در پرواز افزایش می‌یابد.

1-6 نتایج حسگرها

در این قسمت به تشریح نتایج اولاند اندازه‌گیری این سیستم حسگری پروپورس و تشنج و تطبیقی ما بهبود پرداخته می‌شود تا از مسئولیت قابل قبول در حسگرها متصدی باشد. به طور محتمل حسگری قابل قبول در حسگرها نمی‌تواند در اندازه‌گیری باید در نظر گرفته شود برای ای این مشکلات مناسب اولیه که در برگه مشخصه سنسور در دست است، استفاده کرده برای تخمین

شکل 16 نتایج مقدار خروجی و بسته امده ویژه پرنده

شکل 17 نتایج مقدار خروجی و بسته امده ویژه پرنده

شکل 18 نتایج مقدار خروجی و بسته امده ویژه پرنده

شکل 19 نتایج حسگر زاویه‌گیری
اندازه‌گیری، کالرین ویتی می‌تواند از گرندتندر تحصیل بازی شانس‌سازی با سرعت زاویه‌ای کننده شکن ۱۹ بسته نایب حسگر زاویه‌سنج در همان مسیر نشان دهد. شکن ۲۰ و ۲۱ نشان داده شده‌اند.

- نتیجه‌گیری

در این مقاله به منظور افزایش قدرت یک پروانه در محیط برون‌انداز و همجینی مقایسه با افتخاریانتن‌های مانند باد، تعداد موتورهای یک پروانه به‌طور مداوم به شکل‌های مختلف بوده و با تنظیمات مختلفی انجام گرفته‌اند. در این پروانه‌ها مدل راین‌های تناسب ناحیه‌ای، دارای مکانیکی ساده و مبتنی بر تکنیک‌های متنوعی‌های با هزینه‌های بسیار قابل‌توجه‌تر بوده و در محیط‌های برون‌انداز، شکن‌های الکترودی، ساخته شده‌اند، خصوصاً شانس‌سازی، زاویه‌سنجی و نیروی کار. هدف از این پروانه‌ها در انجام مکانیک خوب‌سازی شده در نتیجه این امر منجر به کنترل و پردازش مناسب و اقتصادی مسیر مورد قبول گردید.

- فرست علایم

ضرب گرانش

\[g \]

\[\beta \]

\[\theta \]

\[\delta \]

\[\gamma \]

\[\alpha \]

\[\psi \]

\[\phi \]

\[\omega \]

J. Escareno, S. Salazar-Cruz, R. Lozano, Embedded control of a four-rotor UAV, Proceeding of the American Control Conference, Minneapolis, USA, pp. 189-204, 2006.

C. Xiao, B. Xian, Q. Yin, W. Zeng, H. Li, Y. Yang, A nonlinear adaptive control approach for quadrotor UAVs, Asian Control Conference (ASCC), Splendor Kaohsiung, Taiwan, pp. 223-228, 2011.

T. Madani, A. Benallegue, Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles, American Control Conference, Concordia University Montreal, Canada, pp. 5887-5892, 2007.

A. Bhave, B. Krogh, D. Garlan, B. Schmerl, View consistency in architectures for cyber-physical systems, IEEE/ACM International Conference on Cybernetic, Chicago, USA, 2011.

D. Cabecinhas, R. Cunha, C. Silvestre, A Nonlinear quadrotor trajectory tracking controller with disturbance rejection, American Control Conference (ACC), Portland, Oregon, USA, pp. 978-983, 2014.

C. Coza, C. J. B. Macnab, A new robust adaptive-fuzzy control method applied to Octorotor helicopter stabilization, NAFIPS