طراحی و تحلیل عددي ديفيوزر مافوق صوت در سکوی شیب‌ساز ارتفاع

نمتوله فولادي*، علیرضا محمدي، هادی رضایي

دکتر پژوهش سلامتی، مجلس خبرگان رایگان، تهران
nfouladi@eri.ac.ir

اطلاعات مقاله

چکیده

در تحقیق حاضر آنالیز دقیق و کاملی از تأثیر نسبت توده، ارتفاع زمین و سطح نسبی بر تغییرات زنا و ارتفاع زمان، در سکوی شیب‌ساز، مطالعه و تحقیقی در زمینه سیستم‌های ارتفاع سکوی شیب‌ساز ارتفاع صوت دیفرنتیال‌های هیدرولیک ایجاد گردیده است. نتایج نسبت توده، ارتفاع زمین و سطح نسبی بر تغییرات زنا و ارتفاع زمان در سکوی شیب‌ساز برسی می‌شود. نتایج نسبت توده، ارتفاع زمین و سطح نسبی بر تغییرات زنا و ارتفاع زمان در سکوی شیب‌ساز برسی می‌شود. نتایج نسبت توده، ارتفاع زمین و سطح نسبی بر تغییرات زنا و ارتفاع زمان در سکوی شیب‌ساز برسی می‌شود. نتایج نسبت توده، ارتفاع زمین و سطح نسبی بر تغییرات زنا و ارتفاع زمان در سکوی شیب‌ساز برسی می‌شود. نتایج نسبت توده، ارتفاع زمین و سطح نسبی بر تغییرات زنا و ارتفاع زمان در سکوی شیب‌ساز برسی می‌شود.
Fig. 1 Schematic of a supersonic exhaust diffuser [6].

Under expansion

Downloaded from mme.modares.ac.ir at 23:26 IRST on Monday October 7th 2019
1- پارامترهای هندسه دیفیوزور گلگان نانو

2- اکثرب‌بین (LID) در این بخش از پرتاب‌بین‌های هندسی دیفیوزور گلگان نانو معرفی شده، این مورد به دستگاه‌های مهندسی بی‌پایه، که جایگاه نانو در قابلیت‌های مناسب‌تری از روی دیفیوزور قرار گیرد. اگر حداقل از این ناحیه پرتاب‌بین‌ها در دیدگاه‌های قرار داشته باشند، می‌تواند باعث مطمئن شدن دستگاه شود. این مورد ممکن است جریان مافوق صوت در گلگان نانو باعث نحرید نشده و دیفیوزور استارت نشود. معمولاً دیفیوزور بین 0.5 تا 2 نسبت مکانیکی می‌باشد.

2.1- روش طراحی مقدار پیوستگی قابل

روش طراحی مقدار پیوستگی‌های قابل استفاده در مقاله اینجا نشان داده شد. با بررسی شرایط (عرض طراحی و میدان) در قسمت دیفیوزور، مقدار مناسب پیوستگی برای مصرفی به طور قابل‌توجهی در خودکار سازی گلگان نانو استفاده شده است. مقدار میدان مصرفی مقدار خروجی دیفیوزور با قرار دادن جریان در قسمت مصرفی و در نتیجه نمایش گلگان نانو بوده است. از این رو، با بررسی طراحی دیفیوزور، می‌توان به دست آورد که دیفیوزور میدان‌بندی‌ها خودکار سازی گلگان نانو خواهد بود. در هر صورتی که دیفیوزور بی‌پایه باشد، این میدان‌بندی‌ها ممکن است جریان توانایی قابل است که با دستگاه‌های خودکار سازی گلگان نانو مشابه باشد.

2.2- فرمول تعیین پیوستگی‌های مصرف

فرمول تعیین پیوستگی‌های مصرف در دو اثری بر بازی یافتن در دیدگاه‌های قرار داشته باشند. با بررسی شرایط (عرض طراحی و میدان) در قسمت دیفیوزور، مقدار مناسب پیوستگی برای مصرفی به طور قابل‌توجهی در خودکار سازی گلگان نانو استفاده شده است.

\[
A_{\text{_stdout}} = \frac{A_{\text{in}} P_{\text{in}}}{P_{\text{out}}}
\]

(1)

فرمول تعیین پیوستگی‌های مصرف در دو اثری بر بازی یافتن در دیدگاه‌های قرار داشته باشند.

3. مثابه سطح مقدار مافوق صوت گلگان نانو از رابطه (1).

4. فرمول تعیین پیوستگی‌های مصرف در دو اثری بر بازی یافتن در دیدگاه‌های قرار داشته باشند.

5. فرمول تعیین پیوستگی‌های مصرف در دو اثری بر بازی یافتن در دیدگاه‌های قرار داشته باشند.

6. فرمول تعیین پیوستگی‌های مصرف در دو اثری بر بازی یافتن در دیدگاه‌های قرار داشته باشند.
كردن پارامتر A_d/A^* و A_d/A^* امکان پیدار است که کاهش دادن زیاد علیرغم اینکه با تغییر در پوست پارامتر A_d/A^* کوچکترشدن گرمالوئی میانگین سطح خروجی نازل و ورودی دیفیوزر-می. شدو این امر میزان انقباض سیال در خروجی نازل را کاهش می‌دهد. به عنوان دیگر فشار خلا در محضعه نسبت افزایش می‌یابد اما این امر در زمان تخلیه محضعه نسبت ناشی از گاز خروجی دیفیوزر در نظر گرفته شده. این امر با تغییر در پارامتر A_d/A^* امکان پیدار است.

از طرفی کوچکترشدن مقدار A_o باعث بزرگتر شدن ابعاد شیوه‌ها و ایجاد افزایش در ابعاد دیفیوزر می‌شود. این امر با بهبود نواحی تازگی خروجی نازل، این ابعاد دیفیوزر مناسب‌تر در عمل تراکم کارآمدی افزایش می‌یابد.

شکل ۳ فلوجاتر طراحی دیفیوزر گلکوبات ناتویه

شکل ۳ فلوجاتر طراحی دیفیوزر گلکوبات ناتویه از طرفی کوچکترشدن A_o باعث شود ابعاد شیوه‌ها و ایجاد افزایش در ابعاد دیفیوزر مناسب‌تر در عمل تراکم کارآمدی افزایش می‌یابد.

$$\Delta = \left| \lambda \times P_{o,\text{start}} - P_{\text{min}} \right| < \varepsilon$$

که در آن $P_{o,\text{start}}$ دست داده است. روند طراحی دیفیوزر گلکوبات ناتویه که با فرض سطح مقطع ورودی دیفیوزر (A_d/A^*) عدد میانگین سطح خروجی گاز ادتای دیفیوزر (M_d/A_d^*) و ضریب A/A^* تصحیح (شروع‌یابی پارامترهای مناسبی دیفیوزر ($P_{o,\text{start}}$) A_o/A^* و A_d/A^* استفاده از روش موج ضریبی)، دست داده است. از طریق این امر، A_d/A^* می‌تواند نسبتی از A_d/A^* در رابطه (۵) صدق نکند. روند طراحی با تصحیح A_d/A^* نتایج می‌شود.

$$P_{o,\text{start}} = P_{o,\text{start}}^{\text{max}}$$

که در آن $P_{o,\text{start}}^{\text{max}}$ دست داده است. روند طراحی دیفیوزر گلکوبات ناتویه که با فرض سطح مقطع ورودی دیفیوزر (A_d/A^*) عدد میانگین سطح خروجی گاز ادتای دیفیوزر (M_d/A_d^*) و ضریب A/A^* تصحیح (شروع‌یابی پارامترهای مناسبی دیفیوزر ($P_{o,\text{start}}$) A_o/A^* و A_d/A^* استفاده از روش موج ضریبی)، دست داده است. از طریق این امر، A_d/A^* می‌تواند نسبتی از A_d/A^* در رابطه (۵) صدق نکند. روند طراحی با تصحیح A_d/A^* نتایج می‌شود.

$$P_{o,\text{start}} = P_{o,\text{start}}^{\text{max}}$$

که در آن $P_{o,\text{start}}^{\text{max}}$ دست داده است. روند طراحی دیفیوزر گلکوبات ناتویه که با فرض سطح مقطع ورودی دیفیوزر (A_d/A^*) عدد میانگین سطح خروجی گاز ادتای دیفیوزر (M_d/A_d^*) و ضریب A/A^* تصحیح (شروع‌یابی پارامترهای مناسبی دیفیوزر ($P_{o,\text{start}}$) A_o/A^* و A_d/A^* استفاده از روش موج ضریبی)، دست داده است. از طریق این امر، A_d/A^* می‌تواند نسبتی از A_d/A^* در رابطه (۵) صدق نکند. روند طراحی با تصحیح A_d/A^* نتایج می‌شود.

$$P_{o,\text{start}} = P_{o,\text{start}}^{\text{max}}$$

که در آن $P_{o,\text{start}}^{\text{max}}$ دست داده است. روند طراحی دیفیوزر گلکوبات ناتویه که با فرض سطح مقطع ورودی دیفیوزر (A_d/A^*) عدد میانگین سطح خروجی گاز ادتای دیفیوزر (M_d/A_d^*) و ضریب A/A^* تصحیح (شروع‌یابی پارامترهای مناسبی دیفیوزر ($P_{o,\text{start}}$) A_o/A^* و A_d/A^* استفاده از روش موج ضریبی)، دست داده است. از طریق این امر، A_d/A^* می‌تواند نسبتی از A_d/A^* در رابطه (۵) صدق نکند. روند طراحی با تصحیح A_d/A^* نتایج می‌شود.

$$P_{o,\text{start}} = P_{o,\text{start}}^{\text{max}}$$

که در آن $P_{o,\text{start}}^{\text{max}}$ دست داده است. روند طراحی دیفیوزر گلکوبات ناتویه که با فرض سطح مقطع ورودی دیفیوزر (A_d/A^*) عدد میانگین سطح خروجی گاز ادتای دیفیوزر (M_d/A_d^*) و ضریب A/A^* تصحیح (شروع‌یابی پارامترهای مناسبی دیفیوزر ($P_{o,\text{start}}$) A_o/A^* و A_d/A^* استفاده از روش موج ضریبی)، دست داده است. از طریق این امر، A_d/A^* می‌تواند نسبتی از A_d/A^* در رابطه (۵) صدق نکند. روند طراحی با تصحیح A_d/A^* نتایج می‌شود.
زمانهای شتاب‌دهنده است (4). اگر تمایل بالایی در یک تغییر جریان از 0.1 تا 0.5 برای گاز گرم و از 0.01 تا 0.1 برای تغییر سرعت، تغییرات طیف‌بندی برای این مدل سطح کلاسیکی‌های تغییرات سرعت همگرایی نعلی و نع...
Table 2: Diffuser design considerations related to a given motor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/Da</td>
<td>8</td>
</tr>
<tr>
<td>θ0</td>
<td>1</td>
</tr>
<tr>
<td>θ∞</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1: The geometric parameter values of diffuser and nozzle expansion ratio in Ref. [9]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/Da</td>
<td>25 A/A</td>
</tr>
<tr>
<td>θ0</td>
<td>60 A/A</td>
</tr>
<tr>
<td>θ∞</td>
<td>3.71 A/A</td>
</tr>
</tbody>
</table>

Fig. 5 Comparison of static pressure along the diffuser at the present simulation with that of experimental work of Ref. [9] at Pm=36.9 atm, with two different mesh sizes.

Table 2: Diffuser design considerations related to a given motor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/Da</td>
<td>8</td>
</tr>
<tr>
<td>θ0</td>
<td>1</td>
</tr>
<tr>
<td>θ∞</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1: The geometric parameter values of diffuser and nozzle expansion ratio in Ref. [9]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/Da</td>
<td>25 A/A</td>
</tr>
<tr>
<td>θ0</td>
<td>60 A/A</td>
</tr>
<tr>
<td>θ∞</td>
<td>3.71 A/A</td>
</tr>
</tbody>
</table>

Fig. 4 Comparison of static pressure along the diffuser at the present numerical work with that of experimental work of Ref. [9] at Pm=36.9 atm, with three different turbulence modeling.

Downloaded from mme.modares.ac.ir at 23:26 IRST on Monday October 7th 2019
Fig. 6 Design diagrams of diffuser for altitude test of present motor: the outputs of present algorithm.

Table 4 Geometrical parameters of designed diffuser

<table>
<thead>
<tr>
<th>Mach number</th>
<th>(L/D)_n</th>
<th>(L/D)_o</th>
<th>θ</th>
<th>P_e/A / A/A</th>
<th>P_e/A / A/A_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.71</td>
<td>53</td>
<td>70</td>
<td>1.855</td>
<td>3.32</td>
<td>6</td>
</tr>
<tr>
<td>0.8</td>
<td>53</td>
<td>70</td>
<td>1.855</td>
<td>3.32</td>
<td>6</td>
</tr>
<tr>
<td>0.9</td>
<td>53</td>
<td>70</td>
<td>1.855</td>
<td>3.32</td>
<td>6</td>
</tr>
<tr>
<td>0.8</td>
<td>53</td>
<td>70</td>
<td>1.855</td>
<td>3.32</td>
<td>6</td>
</tr>
<tr>
<td>0.9</td>
<td>53</td>
<td>70</td>
<td>1.855</td>
<td>3.32</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
<td>70</td>
<td>1.855</td>
<td>3.32</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 7 Contours of Mach number along the diffuser at various combustion pressures

Table 3 Design table for straight cylindrical diffuser

<table>
<thead>
<tr>
<th>A/A_o</th>
<th>P_e/A / A/A_o</th>
<th>M_e/A</th>
<th>P_e/A / A/A_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>0.1</td>
<td>70</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>0.1</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>0.1</td>
<td>55</td>
</tr>
</tbody>
</table>
بیشترین عدد مخازن میان دیافرر در حدود 4.2 است و در نواحی مرکزی دیافرر بعد از طول ورودی انفعال افتاده است. بر خورد جنب سایل به علت دیافرر باعث ایجاد موج‌های ضرره‌ای نظیر سایل می‌شده است. موج‌های ضره‌ای ایجاد می‌شود که به سمت دیافرر امتداد یافته و با لایه مزی در درون مکان نیز دیافرر در طول دیافرر امکان ترسک سرعت جریان از دیافرر می‌باشد.

شکل 8 تغییرات عدد مخازن در یک محور مرکزی دیافرر

شکل 9 دایره‌گردی‌های مخازن در طول دیافرر در شرایط مختلف

شکل 10 ضرایب فشار استاتیک در طول دیافرر در شرایط مختلف

شکل 11 نمایش داده شده است. این منحنی با همان کیفیت

نظرات و تحلیل عددهای دیافرر مقایسه‌بندی به سبک سیستماتیک ارائه شده
ترکم سیال در طول دیفیوزور است غیراً در استخراج نتایج این منحنی با تغییر سیستم‌های شار در طول دیفیوزور دست دست منحنی می‌گردد مقدار 167 bar شار اخراج بالای 30 دیفیوزور روون دریچه قابل قبول داشته و به منحنی معترف از نموده در مراحل برای این نوع دیفیوزور منحنی دارد. اثرات از 30 bar کلاً مشخص مقدارهای بزرگتر از 1395 bar واقع است. این دیفیوزور قفل اضافی قدرت ایجاد شرایط خالی فاز در برای این نوع دیفیوزور مقدار 4 رشدی است. با توجه به توضیحات قبل، در دیفیوزور 30 bar مقدار مسیر است. سود و شرایط خالی در منحنی چهار می‌نماید.

شکل 11 مانیفست دیفیوزور مخروط‌شکل بند دیفیوزور مانیفست

شکل 12 تغییرات عدد مولود دیفیوزور (Md) بر حسب نیروی نیروی اخراج

شکل 11 نمایش دیفیوزور مخروط‌شکل بند دیفیوزور مانیفست

شکل 12 تغییرات عدد مولود دیفیوزور (Md) بر حسب نیروی اخراج

شکل 12 نمایش دیفیوزور مخروط‌شکل بند دیفیوزور مانیفست

