بررسی اثر ترموفوروریک بر تنشینی درات خروجی از اکزوز موتوهای دیزل بعد از تونل رفیق‌سازی

پویان طالبی‌زاده ۱، حسن رحیم‌زاده ۲، کوثر زاده ۳

چکیده
هدف از انجام این پژوهش بررسی اثر ترموفوروریک بر تنشینی درات نانو خروجی از اکزوز موتوهای دیزل بعد از تونل رفیق‌سازی بوده است.

اطلاعات مقاله
نام پژوهشگر: پویان طالبی‌زاده
نام اول صدر: پ. تالبی‌زاده
نام ثالث صدر: ه. رحیم‌زاده
نام چهارم صدر: گ. احمدی
نام روز برسید: ۱۸ بهمن ۱۳۹۴
نام ماه برسید: ۰۹ دی ۱۳۹۴
نام سال برسید: ۱۳۹۴
نام پژوهشگر: ه. رحیم‌زاده
نام اول صدر: پ. تالبی‌زاده
نام ثالث صدر: ه. رحیم‌زاده
نام چهارم صدر: گ. احمدی
نام روز برسید: ۱۱ اسفند ۱۳۹۴
نام ماه برسید: ۰۹ دی ۱۳۹۴
نام سال برسید: ۱۳۹۴

سخن‌گویان تر نسخه استرامیدهای داخلی در رابطه با مسئولیت آگوگی و واکنش نسئولنده‌ها، درمان و امراض بروز نشان داده شد که نیاز به کاهش آگوگی‌ها باید از این جهت باشد.

Please cite this article using:
P. Talebizadeh, H. Rahimzadeh, G. Ahmadi. Study the thermophoresis effect on the deposition of nano-particles from diesel engine exhaust after the dilution tunnel, Modares Mechanical Engineering, Vol. 16, No. 4, pp. 383-390, 2016 (in Persian)
بی‌توضیح مطلبی برای ثبت نمودن نمی‌گردد.

dan1921991.pdf
مورد بررسی قرار می‌گیرد. بررسی سه بعدی ارتباطه‌ای هر یک از این نیروها بر روی درات نانو در محیط دمایی قطر بین ۴ تا ۱۰۰ نانومتر از دیدگاه این مسئله می‌باشد. لازم به ذکر است که بررسی ثرمودینامیک بر روی درات خروجی از طرف نیرو‌های ثرمودینامیکی می‌باشد. برای در مطالعهٔ نیروی ثرمودینامیکی نسبت به نیروی برایهٔ جهانی‌های کارا، گزاره‌های بدتر و در ضمن تاکید کنندهٔ کارهای اینجا شده توسط گروه‌شناسی نیز می‌باشد.

2- مدل ریاضی مسئله

مقادیر انرژی ثرمودینامیکی حاصل از باریک سایل همان معادلات شناخته‌شده

\[F_{th} = \frac{2Kv^{1/2}d_{h}^{1/3}}{S_d} (u_{h} - u_{f}) \]

که در آن ک ضریب ثاث معادله نیروی این و این برای ۲.۵۹۴ در نظر گرفته می‌شود. نیروی نازنوس نزدیک شکل نسبی است و با استفاده از

\[d_{th} = \frac{1}{2} \left(u_{h} + u_{f} \right) \]

شانزده ک این نیرو برای دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریانی که در میکروسکوپی‌های مورد مطالعه در سایل که در آن ک نیرو برای دارای یک دریاسیت معادلات حاکم استفاده شده است.

3- هندسه، شکل‌بندی و شرایط مبنا

همان‌طور که گفته بود، هندسه‌نظامی در این پژوهش یک استوانه است که در نمایی از آن در شکل ۱ نشان داده شده است. قطر استوانه ۱۵ میلی‌متر و طول آن از ۱۰۰ میلی‌متر از در نظر گرفته شده است. لازم به ذکر است که از انرژی فلوتان ۲ برای حل معادلات حاکم استفاده شده است.

ICEM CFD برای شبیه‌سازی انرژی در انتقال حرارت مدلهای شناخته‌شده است. استفاده شده است. نیروی از شبیه‌سازی انجام گرفته در مقاطع عرضی و طولی لوله در شکل ۲ نشان داده شده است. شبکه نانوماتری کاملاً استاتیفایه و مرکب در شکل است. همان‌طور که مشاهده می‌شود، شبکه یک دوختی به دویل شبکهٔ مسیر دارای اهمیت حیاتی است. شبکه‌های شبیه‌سازی استفاده شده است. استفاده شده است. شکل ۲۰ نانومتری ۱۰۰/۰۰۵ شاعر لوله در نظر گرفته شده و با نسبت ۱/۱ در حال افزایش می‌باشد لازم به ذکر است که انتقال همکاری در ادامه مورد بررسی قرار خواهد گرفت.

1- One way coupling

2- ANSYS-Fluent 15.0
تعداد کل ذرات نیرو 0-1000 لتر در نظر گرفته شده که با توجه به پرورش سرعت توزیع فراورده در جریان ارمن از طریق پیکتی در ورودی به علت تغییر در طراحی مصرف 2000 کیلوگرم بر متر مکعب معیار، در پیش کرده و در نظر گرفته شده، تمام این اورده در طرح فراورده نیروی برای این شرایط برابر در ورودی، برای حجم شرکت دارد و از نظر فیزیکی و شرایط کلی، در این مقاله نواحی مختلف نیروی بر روی پوشش نشان داده شده است.

با توجه به علیه دادن استفاده در طراحی و بررسی نیروی در این مقاله، این برای بررسی 26 برای ذرات به قطر 5 نمونه با تعداد 0.26 برای ذرات به قطر 500 نمونه تغییر می‌کند. هر ذراتی نسبت به 10 نمونه را برای استفاده زمانی فراورده نشان می‌دهد. همان‌طور که مشاهده می‌شود نتایج مربوط به هر شیکاگو به‌طور کل به‌طور نقاط مشترک در یک دایره منظم از نظر فناوری ارائه را نشان می‌دهد.

نتایج با پیکسوند نتایج شیکاگویی دور و در مورد از شیکاگویی شماره 2 برای بررسی نتایج استفاده شده است.

نتایج امنیتی نتایج

نتایج حاصل از تحقیق ذرات ناد در جریان داخل استوانه به‌منظور انتزاع صفر در میانگین از استوانه به‌منظور انتزاع صفر در میانگین استفاده می‌شود.

\[
DE = 1 - \left(0.19 \times 10^{-14} \right) + 0.975 \times 10^{-14} + 0.0325 \times 200 + 0.0355 \times 125 \times 10^{3}
\]

شکل 2 نمایی از شیکاگویی هندسه در افق

 Nah می‌باشد.

نتایج حاصل از تحقیق ذرات ناد در جریان داخل استوانه به‌منظور انتزاع صفر در میانگین استفاده می‌شود.

\[
D_{pipe} = \frac{D}{2} \times \left(\frac{4}{3} \pi r_{pipe} \right)
\]

که در این مایع LD دی‌هدر و این‌ها نیروی بیانی می‌گردد.

\[
D = \frac{k_p T_C}{3 m_\rho d_p}
\]

شکل 3 نمایی از شیکاگویی ذرات برای قطرهای بین 5 تا 500 نمونه برای جریان داخل استوانه با نظر فناوری ارائه ذرات برای میلی در ورودی به داشتم از سیستمی فراورده نیروی برای ذرات نشان می‌دهد. همان‌طور که ملاحظه می‌شود نتایج حاصل از طبقه کامل با

\[
DE = \frac{n_w}{m_{in}}
\]

1- Matlab

شکل 1 نمایی از هندسه مطالعه در این مقاله

\[
Fig. 1 A schematic of studied geometry in this paper
\]

\[
Fig. 2 A view of computational mesh at the a) pipe cross section b) pipe length
\]
Table 1: Mesh independency analysis for 10 nm particles

<table>
<thead>
<tr>
<th>_ed\textregistered</th>
<th>Mesh Size</th>
<th>Particle Deposition Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>780615</td>
<td>1.88</td>
</tr>
<tr>
<td>2</td>
<td>2013165</td>
<td>1.98</td>
</tr>
<tr>
<td>3</td>
<td>3812405</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Fig. 3: Particle deposition efficiency for different particle diameters for the fully developed pipe flow in compare with the Ingham equation.

Fig. 4: A schematic design of particle deposition measurement after the dilution tunnel.

Fig. 5: The profiles of a) velocity and b) Temperature at three different line cross section of the pipe.
Table 2 Particle deposition efficiency for different particle diameters by considering various applied forces.

<table>
<thead>
<tr>
<th>Particle Diameter (μm)</th>
<th>Brownian Force alone</th>
<th>All Forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.4618</td>
<td>0.4879</td>
</tr>
<tr>
<td>10</td>
<td>0.4618</td>
<td>0.4879</td>
</tr>
<tr>
<td>20</td>
<td>0.4618</td>
<td>0.4879</td>
</tr>
<tr>
<td>40</td>
<td>0.4618</td>
<td>0.4879</td>
</tr>
</tbody>
</table>

Fig. 7 Temperature profiles at three different line cross section of the pipe with the maximum temperature of 18.3 C.

Fig. 8 Particle deposition efficiency by considering the Brownian force alone and all applied forces for different particle diameters for the maximum inlet temperature of 18.3C.

Fig. 6 Particle deposition efficiency by considering the Brownian force alone and all applied forces for different particle diameters.

Fig. 5 Temperature profiles at three different line cross section of the pipe with the maximum temperature of 18.3 C.

Fig. 4 Particle deposition efficiency by considering the Brownian force alone and all applied forces for different particle diameters.

Fig. 3 Temperature profiles at three different line cross section of the pipe with the maximum temperature of 18.3 C.
6- تقدیر و نتیجه‌گیری

در پایان گزارش این مقاله نشان داده شده است که در سیستم‌های مایکرو ماکرو، می‌توان از الگوهای چندگانه برای شبیه‌سازی پدیده‌های ذرات از گازهای متغیر انرژی نیاز داشت. این مقاله نشان داد که بهترین نتیجه‌برداری‌ها در مدل‌های سیستم‌های ذرات بالا عادی به دست آمده و بهترین نتیجه‌برداری در مدل‌های سیستم‌های ذرات بالا عادی به دست آمده.

7- مراجع

Fig. 9 Particle deposition efficiency by considering all applied forces for different particle diameters for different maximum inlet temperature of 18.3 C and 23.2 C.

<table>
<thead>
<tr>
<th>Particle diameter (μm)</th>
<th>Deposition efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>23.2</td>
</tr>
<tr>
<td>0.5</td>
<td>18.3</td>
</tr>
</tbody>
</table>

مقاله می‌شود

• بررسی اثر ترکیبات نانو ترموفریکتیک بر ذرات تانزاً مقدار باران می‌شود. این مقاله نشان داد که ترکیبات نانو ترموفریکتیک بر ذرات تانزاً مقدار باران می‌شود. این مقاله نشان داد که ترکیبات نانو ترموفریکتیک بر ذرات تانزاً مقدار باران می‌شود.

