Field study of gap dimensions around conventional doors and windows in Iran and relations for calculating air infiltration of them

Danial HakimiRad¹, Mehdi Maerefat*, Behrouz Mohammad Kari², Hazhar Rasouli¹

¹- Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
²- Energy, Acoustic & Light Department of Road, Housing & Urban Development Research Center (BHRC), Tehran, Iran.
*P.O.B. 14115-111 Tehran, Iran, maerefat@modares.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 17 April 2016
Accepted 13 June 2016
Available Online 13 July 2016

Keywords:
Air infiltration
Gaps around doors and windows
Pressure difference
Experimental study

ABSTRACT

Study of air infiltration into a building in several ways such as energy, air quality, thermal comfort and pollution entering in the building is very important. In this context, many studies have been conducted in different countries. In our country due to the use of steel doors and windows, independent research on the gap size and air infiltration is necessary. This study, by practical view and in order to localize results, based on a field study, the actual dimensions of the gaps around conventional doors and windows in Iran are measured. The results of these measurements are used to simulate gaps, then, with experimental study air infiltration rate of these gaps is calculated at different pressures. In present study, after investigating the effect of different aspects of gaps on air infiltration rate, two common equations, power law and quadratic equation, were compared in order to fit data. Results show that power law equation can adapt better to the experimental data. Coefficients of the power law equation to estimate the air infiltration rate through the gaps were presented. Due to the proximity factor of the pressure difference to the number 0.5 in most of the results, it was concluded that the Bernoulli equation can be used to predict the air infiltration rate through the gaps. This equation is in better compliance with laws and physical principles. Discharge coefficient of the Bernoulli equation for gaps with different dimensions is calculated.

Fig. 1 Different Dimension of straight gap

Fig. 2 Different Dimension of L-shape gap

Fig. 3 Different Dimension of Z-shape gap

1 Stack effect
در مجموعه‌ای از کاغذ را و پنجره‌ها درای 2-2-1

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم. در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.

در این مجموعه می‌توانیم از دو نوع از کاغذ درای خیاط و پنجره‌ها را استفاده کنیم.
طرح آزمون و نر چربی ورودی به محظوطه آزمایش به حالت پایا رسیدند.

سرعت متوسط بزرگی از کانال اندازه‌گیری و ثبت شده و سپس از رابطه (1) برای محاسبه دی‌هوای عبوری از کانال استفاده شد.

\[Q = V \times A_{eff} \]

(1)

مقدار \(A_{eff} \) برای \(12075.93 \text{ mm}^2 \) جایگزین می‌شود.

با نواحی به اینکه، این اندازه‌گیری نوره‌ای و کانال کیفی برای پوشش مجدد نشست ییدا می‌کند که این دی‌هوای نشی انتقال کرده می‌شود. برای تعیین

دی‌هوای نشی واقعی در زری باید دی‌هوای نشی انتقال محاسبه شود. برای

این میزان ارتفاع در زری برای صفر کردن (در برین پریفتی) کانال نوین شده، سپس میزان نشی انتقال در اختلاف فشار مختلف اندازه‌گیری و ثبت شده

و سپس با استفاده از رابطه (2) دی-هوای نشی واقعی در دی‌هوای نشی محاسبه شده

است.

\[Q = Q_t - Q_u \]

(2)

3- مقاله تایبی با پژوهش‌گر

به منظور اطلاع خواندگان محترم، نهایاً اطلاعات گزارش شده در صفحه علی معترف که توسط بک و همکاران (3) انجام شده. برای یک نمونه در مستقیم

1. شکل و 2. شکل به ترتیب در شکل‌های 7، 8 و 9 ارائه شده است. این

درزهای مقبلاً به دنبال گزارش بک و همکاران در جدول 1 آمد است.

تفاوت اندازه‌های از مدل‌های دو کلاسیک و ارائه شده در

شکل‌های دو اندازه‌گیری و در اختلاف دما، و یا همچنین اختلاف جوی در

پریفتی‌های دوره استفاده در محور (1) و یک نمونه بیشتر

برزهای ساخت پریفتی‌ها. نوع کارخانه و غیره کاملاً محتول به نظر

اندازه‌گیری و ثبت شده است.

Table 1 Dimensions gaps compared to the result of reference[3]

<table>
<thead>
<tr>
<th>(h_2)</th>
<th>(h_1)</th>
<th>(d_1)</th>
<th>(d_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>9</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>9</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>

4-2- روش انجام آزمایش

نحوه استفاده آزمایش با طرفین آزمونه (که شامل در زرین داده، و کنترل

شده است) این شامل فناوری مالکی از دیدگاه مثلثی. این اختلاف فناور

در استوانه‌های مختلف مقادیر است و ولی، در حالی که این اختلاف فناور

بیشتر با نمایه‌های صفر طبقه‌بندی شده است. این اختلاف فناور، با برای

ASTM 75 کاربردی در استوانه‌های مختلف اختلاف فناور، با برای

پریفتی‌های دوره استفاده در محور (1) و یک نمونه بیشتر

برزهای ساخت پریفتی‌ها. نوع کارخانه و غیره کاملاً محتول به نظر

اندازه‌گیری و ثبت شده است.

4-2- روش انجام آزمایش

نحوه استفاده آزمایش با طرفین آزمونه (که شامل در زرین داده، و کنترل

شده است) این شامل فناوری مالکی از دیدگاه مثلثی. این اختلاف فناور

در استوانه‌های مختلف مقادیر است و ولی، در حالی که این اختلاف فناور

بیشتر با نمایه‌های صفر طبقه‌بندی شده است. این اختلاف فناور، با برای

ASTM 75 کاربردی در استوانه‌های مختلف اختلاف فناور، با برای

پریفتی‌های دوره استفاده در محور (1) و یک نمونه بیشتر

برزهای ساخت پریفتی‌ها. نوع کارخانه و غیره کاملاً محتول به نظر

اندازه‌گیری و ثبت شده است.

4-2- روش انجام آزمایش

نحوه استفاده آزمایش با طرفین آزمونه (که شامل در زرین داده، و کنترل

شده است) این شامل فناوری مالکی از دیدگاه مثلثی. این اختلاف فناور

در استوانه‌های مختلف مقادیر است و ولی، در حالی که این اختلاف فناور

بیشتر با نمایه‌های صفر طبقه‌بندی شده است. این اختلاف فناور، با برای

ASTM 75 کاربردی در استوانه‌های مختلف اختلاف فناور، با برای

پریفتی‌های دوره استفاده در محور (1) و یک نمونه بیشتر

برزهای ساخت پریفتی‌ها. نوع کارخانه و غیره کاملاً محتول به نظر

اندازه‌گیری و ثبت شده است.

5-2- نحوه محاسبه نرخ فشار

دبی کل هواهای عبوری رابر به مجموع دبیه‌ی عبوری از زرین، محظوظ آزمایش و

سپس کانال کامل است. که برای محاسبه ان، شناخته که اختلاف فشار

شکل 7 مقایسه نرخ نفوذ هوای دی‌هوای از دریا از محظوظ آزمایش

برای یک نمونه در مستقیم.
Compare air infiltration rate obtained from experiments with Baker et al. result for L-shape gap

![Fig. 8](image)

Compare air infiltration rate obtained from experiments with Baker et al. result for Z-shape gap

![Fig. 9](image)

Table 2 depth and height of L-shape gaps simulated

<table>
<thead>
<tr>
<th>d_2</th>
<th>d_1</th>
<th>h_2</th>
<th>h_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.77</td>
<td>17.99</td>
<td>7.68</td>
<td>4.99</td>
</tr>
</tbody>
</table>

Fig. 10 Air infiltration rate for straight gap with depth and height 43.70 and 9.12 mm and a various widths

![Fig. 10](image)

Fig. 11 Air infiltration rate per unit width based on the width of the gap for straight gap

![Fig. 11](image)

Table 2 depth and height of L-shape gaps simulated
1-4 3-1-1-4

- 1-4 3-1-1-4

- 3-1-1-4

- 14 Air infiltration rate based on the depth of the gap for straight gap in a different pressures difference

- 15 Air infiltration rate in terms of straight gap height at different pressures for different heights of 0.8 to 4 mm

- 13 Air infiltration rate per unit width based on the width of the gap for Z-shape gap

Air infiltration rate per unit width based on the width of the gap for Z-shape gap

Fig. 12 Air infiltration rate per unit width based on the width of the gap for L-shape gap

Fig. 11 Air infiltration rate per unit width based on the width of the gap for Z-shape gap

Table 3. Depth and height of simulated Z-shape gaps

<table>
<thead>
<tr>
<th>h_2</th>
<th>h_3</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.04</td>
<td>32.01</td>
<td>15.18</td>
<td>3.92</td>
<td>4.75</td>
<td>3.92</td>
</tr>
</tbody>
</table>

جدول 4. ضرایب معادله درجه دوم و معادله توانی برای دره‌های مختلف

<table>
<thead>
<tr>
<th>ΔP</th>
<th>$aQ + bQ^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>a</td>
</tr>
<tr>
<td>0.995</td>
<td>1489.3</td>
</tr>
<tr>
<td>0.967</td>
<td>275.37</td>
</tr>
<tr>
<td>0.982</td>
<td>42.337</td>
</tr>
<tr>
<td>0.998</td>
<td>421.02</td>
</tr>
<tr>
<td>0.994</td>
<td>246.32</td>
</tr>
<tr>
<td>0.997</td>
<td>165.25</td>
</tr>
<tr>
<td>0.995</td>
<td>338.82</td>
</tr>
<tr>
<td>0.991</td>
<td>338.82</td>
</tr>
<tr>
<td>0.996</td>
<td>80.008</td>
</tr>
</tbody>
</table>

جدول 5. ثابت c, n برای برای معادله درجه دوم

<table>
<thead>
<tr>
<th>n</th>
<th>c (mm)</th>
<th>ΔP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.329</td>
<td>0.0008</td>
<td>1</td>
</tr>
<tr>
<td>0.7068</td>
<td>0.0014</td>
<td>2</td>
</tr>
<tr>
<td>0.6111</td>
<td>0.0020</td>
<td>3</td>
</tr>
<tr>
<td>0.5503</td>
<td>0.0034</td>
<td>4</td>
</tr>
<tr>
<td>0.5396</td>
<td>0.0044</td>
<td>5</td>
</tr>
<tr>
<td>0.5236</td>
<td>0.0056</td>
<td>6</td>
</tr>
<tr>
<td>0.5200</td>
<td>0.0070</td>
<td>7</td>
</tr>
<tr>
<td>0.5187</td>
<td>0.0076</td>
<td>8</td>
</tr>
<tr>
<td>0.5171</td>
<td>0.0096</td>
<td>9</td>
</tr>
<tr>
<td>0.5043</td>
<td>0.0100</td>
<td>10</td>
</tr>
</tbody>
</table>

جدول 6. ضرایب ثابت c, n برای برای معادله درجه دوم

<table>
<thead>
<tr>
<th>n</th>
<th>c (mm)</th>
<th>ΔP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6269</td>
<td>0.0010</td>
<td>2</td>
</tr>
<tr>
<td>0.5506</td>
<td>0.0020</td>
<td>4</td>
</tr>
<tr>
<td>0.5308</td>
<td>0.0032</td>
<td>6</td>
</tr>
<tr>
<td>0.5303</td>
<td>0.0040</td>
<td>8</td>
</tr>
<tr>
<td>0.5159</td>
<td>0.0054</td>
<td>10</td>
</tr>
<tr>
<td>0.5699</td>
<td>0.0014</td>
<td>2</td>
</tr>
<tr>
<td>0.5454</td>
<td>0.0028</td>
<td>4</td>
</tr>
<tr>
<td>0.5371</td>
<td>0.0038</td>
<td>6</td>
</tr>
<tr>
<td>0.5183</td>
<td>0.0050</td>
<td>8</td>
</tr>
<tr>
<td>0.5071</td>
<td>0.0062</td>
<td>10</td>
</tr>
<tr>
<td>0.5633</td>
<td>0.0018</td>
<td>2</td>
</tr>
<tr>
<td>0.5363</td>
<td>0.0036</td>
<td>4</td>
</tr>
<tr>
<td>0.5118</td>
<td>0.0048</td>
<td>6</td>
</tr>
<tr>
<td>0.5106</td>
<td>0.0058</td>
<td>8</td>
</tr>
<tr>
<td>0.5083</td>
<td>0.0066</td>
<td>10</td>
</tr>
<tr>
<td>0.5345</td>
<td>0.0024</td>
<td>2</td>
</tr>
<tr>
<td>0.5264</td>
<td>0.0038</td>
<td>4</td>
</tr>
<tr>
<td>0.5130</td>
<td>0.0052</td>
<td>6</td>
</tr>
<tr>
<td>0.5090</td>
<td>0.0064</td>
<td>8</td>
</tr>
<tr>
<td>0.5050</td>
<td>0.0076</td>
<td>10</td>
</tr>
</tbody>
</table>

جدول 7. ضرایب ثابت c, n برای برای معادله درجه دوم

<table>
<thead>
<tr>
<th>n</th>
<th>c (mm)</th>
<th>ΔP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5267</td>
<td>0.0032</td>
<td>2</td>
</tr>
<tr>
<td>0.5188</td>
<td>0.0044</td>
<td>4</td>
</tr>
<tr>
<td>0.5140</td>
<td>0.0058</td>
<td>6</td>
</tr>
<tr>
<td>0.5054</td>
<td>0.0070</td>
<td>8</td>
</tr>
<tr>
<td>0.5023</td>
<td>0.0084</td>
<td>10</td>
</tr>
</tbody>
</table>

**: Quadratic equation
**: Poisson law equation
**: Least square
**: Coefficient of determination
Table 9 Discharge coefficient

<table>
<thead>
<tr>
<th>n</th>
<th>c</th>
<th>(mm)</th>
<th>cΔPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.5212</td>
<td>0.0036</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>0.5091</td>
<td>0.0052</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0.5086</td>
<td>0.0068</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0.5016</td>
<td>0.0066</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 8 Discharge coefficient for straight gap with different heights

<table>
<thead>
<tr>
<th>C_{q}</th>
<th>h_{(mm)}</th>
<th>h_{(mm)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1908</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.6743</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.6777</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.7438</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0.7503</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.7656</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.8133</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0.7702</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0.8615</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0.7832</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Constant factor c, n for Z-shape gap with different heights

<table>
<thead>
<tr>
<th>h_{2}</th>
<th>n</th>
<th>c</th>
<th>(mm)</th>
<th>cΔPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.6737</td>
<td>0.0006</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.5999</td>
<td>0.0012</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5384</td>
<td>0.0022</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5346</td>
<td>0.0028</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5298</td>
<td>0.0036</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5754</td>
<td>0.0014</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5339</td>
<td>0.0022</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5269</td>
<td>0.003</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5182</td>
<td>0.0036</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5074</td>
<td>0.0044</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5446</td>
<td>0.0022</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5363</td>
<td>0.0028</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5215</td>
<td>0.0038</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5073</td>
<td>0.0046</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5020</td>
<td>0.0054</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5421</td>
<td>0.0028</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5261</td>
<td>0.0036</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5127</td>
<td>0.0046</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5082</td>
<td>0.0052</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5064</td>
<td>0.0058</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5212</td>
<td>0.0036</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5181</td>
<td>0.0044</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5091</td>
<td>0.0052</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5066</td>
<td>0.0068</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5016</td>
<td>0.0066</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10 Discharge coefficient for L-shape gap with different heights

<table>
<thead>
<tr>
<th>C_{q}</th>
<th>h_{(mm)}</th>
<th>h_{(mm)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5288</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.5838</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.6678</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.6669</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.7248</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.4284</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0.6053</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>0.6441</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0.6750</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>0.6984</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.4065</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0.6690</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.6379</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.6588</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.6524</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.4043</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>0.5231</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.5941</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.6337</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.6625</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.4408</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>0.5097</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.5812</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.6108</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0.6548</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
جدول 11: نرخ نفوذ هو (m³/s) بر حسب سرعت باد به ارتفاع یک متر عرض در

<table>
<thead>
<tr>
<th>آندار درز</th>
<th>سرعت باد (m/s)</th>
<th>نرخ نفوذ هو (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0034</td>
<td>0.0026</td>
<td>0.0018</td>
</tr>
<tr>
<td>0.0103</td>
<td>0.0083</td>
<td>0.0064</td>
</tr>
<tr>
<td>0.0167</td>
<td>0.01376</td>
<td>0.0108</td>
</tr>
<tr>
<td>0.0229</td>
<td>0.0190</td>
<td>0.0150</td>
</tr>
<tr>
<td>0.0291</td>
<td>0.0241</td>
<td>0.0192</td>
</tr>
<tr>
<td>0.0351</td>
<td>0.0292</td>
<td>0.0232</td>
</tr>
<tr>
<td>0.0411</td>
<td>0.0342</td>
<td>0.0273</td>
</tr>
<tr>
<td>0.0471</td>
<td>0.0392</td>
<td>0.0313</td>
</tr>
<tr>
<td>0.0531</td>
<td>0.0442</td>
<td>0.0353</td>
</tr>
<tr>
<td>0.0591</td>
<td>0.0492</td>
<td>0.0393</td>
</tr>
</tbody>
</table>

جدول 10: ضریب تخلیه L-شکل با ارتفاع‌های مختلف

<table>
<thead>
<tr>
<th>قدرت Q</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3572</td>
<td>0.954</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.4676</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4717</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4996</td>
<td>0.4342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4961</td>
<td>6.8586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4960</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5474</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6169</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5184</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5258</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4804</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.4952</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5251</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5139</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5073</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5494</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5089</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5150</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5253</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5136</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

محاسبه ضریب تخلیه با استفاده از نتایج اندازه‌گیری شده در آزمایش

\[
\rho = 1.202 \left(\frac{kg}{m^3} \right)
\]

4-4-1- توصیه‌های کاربردی

در این بخش با دیدگاه تحقیقات کاربردی و مهندسی، خلاصه‌ای از نتایج به صورت یک دستورالعمل ساده برای استفاده مهندسین ارائه شده است. استفاده از جدول 1 تا 5، پاسخ‌ها از طرف اندازه‌گیری شدند. به‌طور کل می‌تواند با قدرت استفاده درن و پیش‌بینی افزایش بسیار کار مطلوب ناپایداری نشان دهد و به همین دلیل نشان می‌دهد که مصالح مهندسی، برای نفوذ هو در سطح مدرج، سخت و سخت است. سخت به درجه‌های مختلف نفوذ هو یا از طریق نستاخانه تخلیه می‌شود.

5- جمع‌بندی

در پژوهش حاضر، به صورت میدانی ابعاد سه‌ بعدی، دو عدد برای هوران و پیش‌بینی اندازه‌گیری شده و محاسبه تغییرات ابعاد در جدول 4 با استفاده از رابطه در آرایه شده است. می‌تواند با در نظر گرفتن این ابعاد در بررسی کاربردی و واقعی اندازه‌گیری برای شیمی‌دانان در آزمایش‌های مهندسی نتایج ایجاد در این رابطه و پیش‌بینی افزایش شده ایجاد، استفاده از مهندسین نیاز باشد.

[10] Iranian national standard, doors and curtain walls and windows of the building, to determine the air infiltration – test method, (Standard number 7822), 1382. (in Persian)

