Measuring, cross-sectional profiling and geometrical modeling of the pipe by an application programming interface

Mohammadreza Hassanzadehtarouki, Mohsen Shakeri*

Department of Mechanical Engineering, Babol University of Technology, Babol, Iran.

* P.O.B. 47148-16471 Babol, Iran, shakeri@nit.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 07 September 2015
Accepted 29 November 2015
Available Online 20 December 2015

KEYWORDS
- Measurement
- Pipe cross-section Profiling
- Infrared
- Solidworks API

ABSTRACT
CCTV cameras are the main sources of inspecting sewer pipeline conditions, although they do not provide decisive information in both developing and developed countries. Managing sewage installations requires reliable quantitative and geometrical data on the conditions of pipes both in service and after installation. Measuring the rate of sewage blockage has always been challenging. Various attempts have been made to develop and apply different techniques for the determination of pipe blockage, but most of them were not practical or comprehensive. Pipe profiling could be a novel method in this regard. The method proposed in this paper would be able to measure both the cross-section and profile of sewer pipes. This includes two infrared sensors and a servomotor attached to a measurement device mechanism. The set enters a sewer pipe and measures the coordinates of pipe cross-section points. Then, the collected raw data are transferred outside in order to be processed and later saved in a text file format. The saved data will be depicted as pipe cross-section 2D profile using the suggested and developed API package at SOLIDWORKS environment, which in turn will result in the availability of a 3D model of under-inspection pipes. It should be mentioned that different parameters of every desired pipe cross-section will be measurable as well.
یکپارچه برای دوربین‌های مخابراتی و سایر عامل‌های ایمنی استفاده می‌شود.

5- Fish Eye Camera
6- Charge-Coupled Device
7- Diffuser
8- Projections
9- Neural Network
10- Closed-circuit television

1. Visual Inspections
2. Crawlers
3. NDI
4. NDT
5. بارزیس غیر محترم
6. بارزیس غیر محترم
7. بارزیس غیر محترم
8. بارزیس غیر محترم
9. بارزیس غیر محترم

13-10
19-20
33-34
43-44
1- مهندسی کانالیتیک مدرس: علی‌اصغر رضوی، مهندس سازی幡هن: نصیر‌الدین نظری، مهندس جواد شریعتی

1. برای ضرب زیری مناسبی، R_h برای شعاع هیدروتریک (طول) S برای شبیه‌سازی شعاع R_b استفاده شده که به کاهش مناسب‌ترین b منجر به تقلیدی از طرح مورد نظر کاهشی نشان می‌دهد.

2. نمودار Q برای Q_e برای Q نمودار Q_e تبدیل می‌شود.

3. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

4. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

5. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

6. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

7. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

8. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

9. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

10. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

11. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

12. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

13. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

14. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

15. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

16. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

17. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

18. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

19. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

20. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

21. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

22. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.

23. نوبت‌های هیدروتراکتور با بررسی نسبت Q_e به Q تبدیل می‌شود.
عیوب شبکه‌های فاضلاب به‌صورت زیر قابلیت‌های خدماتی دسته‌بندی می‌شوند: عیوب سازش‌هایی که می‌توان به کنترل کردن مکانیزم ابر از ارائه کردن حسگر، خروجی‌های حساسیت در محصولات قابل قبول قرار گرفته و اطلاعات از ارائه خودری‌ها مایه برخورداری زیر می‌باشد. بخش اول شیرینی عیوب و کاهش‌های سازش‌هایی که است به حساب شده و برآورد می‌شود: عیوب لوله‌ها به بیرون کردن حسگر، وجود سیستمی که حاوی اطلاعات از درونی کردن حسگر رابطه با بیرون شده و این جهت که حسگر در زیر این حساب باید بیان شود.

شکل 1 سایت نمونه سازی سریع مدل UP! UP! در حال ساخت طبقات مکانیزم ابر

3- طراحی و ساخت سامانه

اولین گام برای رسیدن به هدف این پژوهش، استفاده به اطلاعات بودی است در این پژوهش بایان ارزاده‌گری نماینده نقش لوله‌ها به عنوان اطلاعات موثری کاربردی، طراحی و بررسی نمونه‌سازی ساخته شد (شکل 1). این مکانیزم باید آرای ارزاده‌گری را تا حد مکمل در محور مکانیزم این ساخته داشته باشد و اطلاعات مرتبط به این نمونه‌سازی نوعی تطبیق است. به‌طور خلاصه، با توجه به اینکه در سمتی از ساخت نمونه سازی سریع مدل UP! UP! موجود در آزمایشگاه پای سخته نشده است (شکل 1).

شکل 2 ساختار این کرادی که از کمک PVC می‌باشد و مواد PVC و UP! UP! می‌تواند قاچاقچی داشته باشد. این ساخته نمونه سازی سریع مدل UP! UP! موجود در آزمایشگاه پای سخته نشده است (شکل 1).

1. Virfined Clay Pipe
2. Omni-directional
Choosing Reference Plane

Generating Next Planes

Sketching Profiles

Transferring the Profiles

Lofting Surface on the Profiles

Fig. 3 The measurement device control board 1- start key 2- outlet circuit 3- servomotor connector 4- power supply 5- sensor connector

Fig. 4 Written API algorithm for Pipe reconstruction

API

1- Application Programming Interface
2- Standalone
3- Add-in Applications
4- Visual Basic for Applications
5- Visual C# / Visual C++ / VB.Net / VBA

Written API algorithm for Pipe reconstruction

Choosing Reference Plane

Generating Next Planes

Sketching Profiles

Transferring the Profiles

Lofting Surface on the Profiles

Fig. 4 Written API algorithm for Pipe reconstruction

API

1- Application Programming Interface
2- Standalone
3- Add-in Applications
4- Visual Basic for Applications
5- Visual C# / Visual C++ / VB.Net / VBA

Written API algorithm for Pipe reconstruction

Choosing Reference Plane

Generating Next Planes

Sketching Profiles

Transferring the Profiles

Lofting Surface on the Profiles
بتیم، پس از نتایج کلی محاسبه و ارزیابی تکنیک پرورش برای اطمینان از برداشت داده‌ها و فراورده‌ها، مطالعات اطلاعاتی را به علاوه عناوان و روش‌های تکنیکی و خریدهای طلایی را نیز می‌دهد. خریدای قابل مشاهده شامل سرمای سلامت در عین تغییر شکل سطح مقطع لوله و بیان شکل مقطع لوله طبق سطح مقطع لوله وارد شده است. عدم تغییر شکل سطح مقطع هم به صورت کمی از هم در دست و به صورت کیفی از نوع بخشی شرایط کنونی مقطع لوله است. در خریدای سطح مقطع به متر مکعب در نتایج به این

1. Calculate and Assessing

2. Start

\[\text{شکل 6: نصب دستگاه اندازه‌گیری در حال کار داخل لوله} \]

\[\text{شکل 5: الگوریتم برنامه رسوم سطح مقطع در محیط نرم‌افزار API} \]
1- Evaluate
2- Section Properties

1. Evaluate

2. Section Properties

For a more detailed analysis, please provide the specific context or questions related to these sections. The text suggests a focus on evaluating and discussing properties, possibly in a scientific or engineering context.
Fig. 7 The user-form containing all APIs in SOLIDWORKS

Fig. 8 Generated profiles from cross-sections by means of coded APIs in SOLIDWORKS with their real cross-sections (corresponding numbers) - Top: real cross-section, bottom: generated cross-section, for every view
6- تهیه گری
در این پژوهش برای دراکیکی، طراحی، ساخت و چند ساختار نانو فازی (API) (فاوی)
مکاپیم ایجاد این آدازه گری یکی از راه‌های مختلف توانسته شود و در این پژوهش مراحل دیگر در انجام فازی، فازی گره، به اموزش این ابزار سنجش عمده، آن زمانی مانعی طرحی در این مورد سایگونی از نظر فنی، این ابزار می‌تواند به عنوان یکی از راه‌های طراحی شده طی در این مورد راه‌حل قدیمی رایج شده است. بیشتر سایر‌های شرکت است. در بای بالینیک به یک‌دستی کار بی‌پایه مورد شرکت و راه‌حل قدیمی رایج شده است.

۱. M. Arbibat, D. Ebrahim, Study on importance of doing visual inspection before temporary delivery to save resources, National Conference on Water and Wastewater Engineering (NCWWE), 2011. (in Persian)
25. Instructions of sewer network visual inspection, Management and Planning Organisation of Islamic Republic of Iran, Iran, p. 25, 2015. (in Persian)