Nonparametric system identification of a cantilever beam model with local nonlinearity in the presence of artificial noise

Morteza Homayoun Sadeghi¹, Saeed Lotfan
Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
* P.O.B. 5166614766 Tabriz, Iran, morteza@tabrizu.ac.ir

**Article Information**

Original Research Paper
Received 01 August 2016
Accepted 08 October 2016
Available Online 30 October 2016

Keywords:
Nonlinear system identification
Local nonlinearity
Advanced empirical mode decomposition
Nonlinear interaction model

**Abstract**

In this paper the effect of artificial noise on the performance of nonlinear system identification method in reconstructing the response of a cantilever beam model having local nonlinearity is investigated. For this purpose, the weak form equation governing the transverse vibration of a linear beam having a strongly nonlinear spring at the end is discretized by using Rayleigh-Ritz approach. Then, the derived equations are solved via Rung-Kutta method and the simulated response of the beam to impulse force is obtained. By contaminating the simulated response to artificial measurement noise, nonparametric nonlinear system identification is applied to reconstruct the response. Accordingly, intrinsic mode functions of the response are obtained by using advanced empirical mode decomposition, and nonlinear interaction model including intrinsic modal oscillators is constructed. Primary results show that the presence of noise in the response highly affects the sifting process which results in extraction of spurious intrinsic mode functions. In order to eradicate the effect of noise on this process, noise signals are used as masking signals in the advanced empirical mode decomposition method and intrinsic mode functions corresponding to the noise are extracted. Based on this approach, the dynamic of the noise in the response is identified and noise signals reduced are constructed by the intrinsic modal oscillators with suitable accuracy.

**References**

Please cite this article using:
مباحث‌ها، اصطلاح و مقدمه‌ای در میان‌گذرگری دایرای غیرلوله‌ی مولیکول‌ی مائع در حضور نرخ متنوع

به غیرلوله‌ی ناشی از از این احتمالات، تحلیل خطی، بازار و سپاس اصطلاح در میان‌گذرگری دایرای غیرلوله‌ی مولیکول‌ی مائع در حضور نرخ متنوع

1. Vbllo-impact
2. Backlash
3. Hilbert-Huang
4. Nonlinear Auto-Regressive Moving Average with eXogenous input

مشابه سی‌گالام مولیکولی، پیم. 1395. دوره 16 شماره 11

شناخته‌گذاری‌های غیرلوله‌ی مولیکول‌ی مائع در حضور نرخ متنوع

۱۱۷
که در آن $\mathcal{T}$ تابع مود نیروی ترمز $U_i(s)$ است که در $s = 0$ به لگاریتم بوده و در محل $s$ دارای اکسل مقطعی یافته $T$ و $U_i(s)$ نیز تابع زمان موج سینوسی هستند که با توجه به تغییرات همگن و انتگرال گیری آن و استفاده از شرایط مرزی برای هر یک از توابع معادلات گسترش شده به شکل ماتریسی زیر به دست می‌آید:

$$\begin{bmatrix} I & M_{Qq} \\ M_{Qq} & m_{Qq} \end{bmatrix} \begin{bmatrix} \frac{d^2 q}{dt^2} \\ \frac{d^2 Q}{dt^2} \end{bmatrix} + \begin{bmatrix} K_e & 0 \\ 0 & K_q \end{bmatrix} \begin{bmatrix} q \\ Q \end{bmatrix} = \begin{bmatrix} F_e \\ F_q \end{bmatrix}$$

(11)

و در آن $\mathcal{T}$ ماتریس اول و $\mathcal{Q}$ ماتریس دوم همگن می‌باشد.

$$T = [T_1, T_2, T_3, \ldots, T_{N-1}]^T$$

(12)

الناهای ماتریس‌های جرم، سفتی و نیروی خارجی تعمیم یافته تابع نیروی براساس روابط زیر به دست می‌آید:

$$m_{Qq}^{ij} = \int_0^1 U_i(s) \psi_i(s) ds, \quad i = 1, \ldots, N - 1$$

(13)

$$m_{Qq} = \int_0^1 \psi_i^2(s) ds$$

(14)

$$k_{Qq}^{ij} = \int_0^1 U_i'(s) U_j'(s) ds, \quad i, j = 1, \ldots, N - 1$$

(15)

$$k_{Qq} = \int_0^1 \psi_i^2(s) ds$$

(16)

$$f_{Qq}^{ij}(\tau) = f(\tau) U_i(s)^*, \quad i = 1, \ldots, N - 1$$

(17)

$$f_{Qq} = f(\tau) \psi(s)^* - q g^3(\tau)$$

(18)

با توجه به رابطه (18) مشخص می‌شود عبارت غیرخطی از نیروی فنر بسیار زیادی می‌باشد که در شرایط استنده است. بنابراین معادلات ماتریسی (11) به صورت $X = (T, \psi, \theta)^T$ به شکل غیرکوپل توفیق می‌شود.

$$X = (T, \psi, \theta)^T$$

(19)

همچنین ماتریس مدول سیستم خلوت $\mathcal{E}$ و در بردار مختصات $\eta$ نیز تابع می‌باشد با توجه به معادلات غیرکوپل پس از استفاده از منحنی نیروی مذکور به صورت زیر به دست می‌آید:

$$u(x, t) = \sum_{r=1}^{N-1} U_i(x) T_r(\tau) + \psi_i(s) q(\tau)$$

(5)
شناختی‌های سیستم‌های دیفرانسیال غیر خطی در واقعیت معمول در محور نوز می‌باشد.

\[ \ddot{y}_i(t) + 2\zeta_i \omega_i \dot{y}_i(t) + \omega_i^2 y_i(t) = f_i(t), \quad i = 1, 2, \ldots, N \]

(20)

در رابطه (20) \( \gamma \) عضو آم. بردار \( \Phi \) و \( \Omega \) همچنین برای فکرکس‌های غیر خطی باید سیستم خطي، است. رابطه

فوق نشان می‌دهد که با کارگیری نسبت (6) جدید، به روش‌های رایج پر می‌شود و

استفاده از معادلات شکل خطي غیرخطی موجب نمک‌می‌شود در مزیت

\( \gamma \) سیستم به صورت سطی‌های غیرخطی شمار مامال دو کننده تعیین می‌شود.

ظاهر نمود.

در پوشش حاضر سیستم سیستم به نماد ضریب دارای 0.4 با

\\( \gamma \) قراردادن معادلات حاکم تهیه از روش رانگ-کوتا.

\( \Phi = 6 \) و حالت نمک‌می‌شود، از دست رد به

استفاده شده است به جهت اینگونه که اینجا به نزدیکی واقع ممکن است

اندازه‌گیری بازی از شناسایی استفاده می‌شود. این مقدار نیز با

به کارگیری مشتق دیگر مشتق دهنده مانند گرم‌کاری به کمک دشک توانایی

سیستم‌ها واقع ممکن به توي اندازه‌گیری می‌شود. به دنبال‌شدن شات

شیب‌سازی شده‌است با استفاده از توضیح آزاد از می‌شود توانایی

مکانی در سیستم سیستم به نزدیک زیر بینی می‌گردد.

\[ \text{SNR}(\tau) = 10 \log \left( \frac{\sigma^2(\tau)}{\sigma^2(\tau)} \right) \]

(21)

که در آن \( \sigma^2(\tau) \) و \( \sigma^2(\tau) \) برای سیستم به نظر مطلوک است، سیستمهای این

شات و نیز است به جهت اینکه این نوع سیستم به نزدیک دست‌بکاری شده.

\\( \gamma \) به زمان‌یابی.

1-2- آنالیز زمان فرکانس

در پوشش حاضر شناسایی غیرخطی براساس داده‌های فنی‌پای این‌ها به

نویس اندازه گیری بنیادی از سیستم به نظر می‌رود و این با نظیر

بررسی‌گر که از بنیاد انتظار داشت زمانی و فردکسی مدل خطي (0 = \( \gamma \) به

نویس شده است. سیستم به دست نمک‌می‌شود که دست نمک‌می‌شود پر

بسماله می‌توان رابطه نوشته معادلات و قدرت فردکسی برای این

سیستم به صورت مشاهده شده است. این به سیستم به نظر مطلوک

شده است به جهت اینکه این نوع سیستم به نزدیک دست‌بکاری شده.

3- دینامیک چرخه آن‌هتم سیستم

جای‌گیری بهزحمتی این سیستم در روش حاضر از هوازی دینامیک

در نمونه‌های دیده‌اند. سیستم به نظر می‌رود به این که پاسخ

ارزش‌های نوزه به سیستم مورد نظر دیگری شست‌کننده باید از

فرکانس زمان نشان می‌دهد که گاهی دقت فردکسی به صورت خطي و

پیک‌سوما ودیده و واگذاری به زمان ناشی به موربی سیستم، این

تبدیل به برای آن‌هتیم‌های فردکسی در دو و تصویر فردکسی سیستم به

در حدود 1 آورد شده است با مقایسه دقیق قادینه شده است به

گزارش در این جدول، نطاق خوبی بین نماینده می‌شود.

\[ y(\tau) = y_1(\tau) + y_2(\tau) + \ldots + y_6(\tau) \]

(22)

\[ y(\tau) = x_1(\tau) = f + \omega x_2(\tau) \equiv a_1(t) e^{i \omega t} \]

(23)

\[ a(\tau) \in \mathbb{C} \text{ به ترتیب اجزا جریان آهسته و سریع} \]

\[ \text{مقدار در رابطه (23) نشان می‌دهد} \]

\[ x_1(\tau) = y(\tau) + f \omega x_2(\tau) \equiv a_1(t) e^{i \omega t} \]

\[ \text{يک‌یافته سیستم به نظر مطلوک است} \]

\[ y(\tau) + 2\zeta \omega y(\tau) + \omega^2 y(\tau) = f(\tau), \quad i = 1, 2, \ldots, N \]

\[ \text{شکل 2: تابع ارتباط میان‌گیری فرکانس غیرخطی و تغییرات نسبی} \]
4. **Experiment on Tone Excitation**

- By selecting the tone of the tone generator, the resulting vibration of the cantilever beam is measured. The tone is fed into the system through a loudspeaker placed at the free end of the beam. The vibration response is then recorded using a data acquisition system.

\[ y(t) = \sum_{j=1}^{m} c_j(t) + R_{m+1}(t), \quad R_{m+1}(t) < tol \]  

(24)

\[ y(t) = c_1(t) + c_2(t) + \ldots + c_6(t) \]

(25)

- The resulting vibration is then analyzed to determine the frequency response function (FRF) of the system.

**Fig. 3** Noise contaminated vibration response of the cantilever beam without local non-linearity, \( \gamma = 0 \), SNR = 20 dB

**Fig. 4** Vibration response of the cantilever beam with local non-linearity, \( \gamma = 10^6 \), SNR = 20 dB

**Fig. 5** Noise contaminated vibration response of the cantilever beam with local non-linearity, \( \gamma = 10^6 \), SNR = 20 dB

**Shahsavan Nonlinearity Models**

- By comparing the results obtained from the nonlinearity models, it is observed that the model assuming the presence of local non-linearity provides a better fit to the experimental data.

\[ \hat{y}(t) = \sum_{j=1}^{m} \hat{c}_j(t) + \hat{R}_{m+1}(t), \quad \hat{R}_{m+1}(t) < \hat{tol} \]  

(26)

- The identified parameters are then used to validate the performance of the nonlinearity models under different operating conditions.

**Shahsavan Nonlinearity Models**

- By comparing the results obtained from the nonlinearity models, it is observed that the model assuming the presence of local non-linearity provides a better fit to the experimental data.

\[ \hat{y}(t) = \sum_{j=1}^{m} \hat{c}_j(t) + \hat{R}_{m+1}(t), \quad \hat{R}_{m+1}(t) < \hat{tol} \]  

(26)

- The identified parameters are then used to validate the performance of the nonlinearity models under different operating conditions.

\[ \hat{y}(t) = \sum_{j=1}^{m} \hat{c}_j(t) + \hat{R}_{m+1}(t), \quad \hat{R}_{m+1}(t) < \hat{tol} \]  

(26)

- The identified parameters are then used to validate the performance of the nonlinearity models under different operating conditions.

\[ \hat{y}(t) = \sum_{j=1}^{m} \hat{c}_j(t) + \hat{R}_{m+1}(t), \quad \hat{R}_{m+1}(t) < \hat{tol} \]  

(26)

- The identified parameters are then used to validate the performance of the nonlinearity models under different operating conditions.

\[ \hat{y}(t) = \sum_{j=1}^{m} \hat{c}_j(t) + \hat{R}_{m+1}(t), \quad \hat{R}_{m+1}(t) < \hat{tol} \]  

(26)

- The identified parameters are then used to validate the performance of the nonlinearity models under different operating conditions.

\[ \hat{y}(t) = \sum_{j=1}^{m} \hat{c}_j(t) + \hat{R}_{m+1}(t), \quad \hat{R}_{m+1}(t) < \hat{tol} \]  

(26)

- The identified parameters are then used to validate the performance of the nonlinearity models under different operating conditions.
ابده اصلی افزایش دادن تجزیه آینه‌ای از سیگنال اصلی باید جلوگیری از تأثیر شرایط اولیه بر توابع مدل ویدیویی و بیداد من که به‌طور اجرای آمیزش سیگنال‌ها را در صورتی که سیگنال اصلی بسیار مناسب نباشد، بستگی به توابع


به تعداد اصلی مقدار تغییر می‌تواند. اگر سیگنال ناشی از معادلات 


\( y_{mirror}(\tau) = \begin{cases} y(-\tau), & \tau \leq 0 \\ y(\tau), & \tau > 0 \end{cases} \) 


به توابع توابع به‌وسیله مدل نابهای براساس رابطه زیر بسته


\( c(\tau) = |c^+(\tau) + c^-(\tau)|/2 \)


در ادامه با استفاده از رویدادتر تایید داده شده، توابع مدل دارای انتهای برای تغییر و نیز می‌توان با معنای مراحلی استفاده یابد. معمولاً با مدل سیگنال‌ها به‌خصوص شکل‌های 6 تا 8 و بهبود که در یک تبدیل قریب به برابری سیگنال با پیامدهای پیامدهای حذف شده‌اند. 


\( y_{masking}(\tau) = \begin{cases} y(-\tau), & \tau \leq 0 \\ y(\tau), & \tau > 0 \end{cases} \) 


\( y^+(\tau) = y(\tau) + y_{masking}(\tau) \)


\( y^- (\tau) = y(\tau) - y_{masking}(\tau) \)


\( y_{0}(\tau) = y(\tau) \)


\( y_{mirror}(\tau) = \begin{cases} y(-\tau), & \tau \leq 0 \\ y(\tau), & \tau > 0 \end{cases} \) 


در حالت توابع مدل نویز ماتریسی است. توابع مدل دارای منجر به حصول و نیز می‌توان با معنای مراحلی استفاده یابد. معمولاً با مدل سیگنال‌ها به‌خصوص شکل‌های 6 تا 8 و بهبود که در یک تبدیل قریب به برابری سیگنال با پیامدهای پیامدهای حذف شده‌اند. 


\( c(\tau) = |c^+(\tau) + c^-(\tau)|/2 \)


در ادامه با استفاده از رویدادتر تایید داده شده، توابع مدل دارای انتهای برای تغییر و نیز می‌توان با معنای مراحلی استفاده یابد. معمولاً با مدل سیگنال‌ها به‌خصوص شکل‌های 6 تا 8 و بهبود که در یک تبدیل قریب به برابری سیگنال با پیامدهای پیامدهای حذف شده‌اند. 


\( c(\tau) = |c^+(\tau) + c^-(\tau)|/2 \)


\( c(\tau) = |c^+(\tau) + c^-(\tau)|/2 \)


\( c(\tau) = |c^+(\tau) + c^-(\tau)|/2 \)


\( c(\tau) = |c^+(\tau) + c^-(\tau)|/2 \)
شکل 10 نمودار دوم سیستم دارای تغییر مکانیکی در حضور نویز صوتی، SNR = 20 dB


(10)

به عبارتی طبقه بن厢ه فوق، عادی بر ضری دی نویز متنافر با شدت فرکانس اصلی سیستم است $m$ نویز منفی رفتار نویز استخراج می‌شود و درک این نویز استخراج دیگری را دارد به همراه رفتار فرکانسی در شکل 11 نمایش داده شده است. مطالعه رفتار فرکانسی انی به نویز نشان می‌دهد که این سیگنال‌ها فاقد فرکانس اصلی سیستم‌های صدایی باشد و با وجود پوشه کننده کامل فرکانسی، در مقایسه با قدرت فرکانس‌های اصلی دیگر قدرت کمتری دارند.

با استخراج نویز در دستگاه سیگنال دیگر "شکل 11" داشته باشید به بعد است. نویز داده شده می‌تواند به همراه این نویز استخراج دیگری را دارد به همراه رفتار فرکانسی انی به نویز نشان می‌دهد که این سیگنال‌ها فاقد فرکانس اصلی سیستم‌های صدایی باشد و با وجود پوشه کننده کامل فرکانسی، در مقایسه با قدرت فرکانس‌های اصلی دیگر قدرت کمتری دارند.

مقایسه "شکل‌های 9.6 و 12" با یکدیگر نشان می‌دهد که رپتر الکترود شده می‌تواند نشان دهنده می‌باشد که از این نویز به طور کامل از سیگنال‌ها نیز در نظر گرفته شوند. نمودار این نمودار به روش یکپارچه دارای نویز و مشابه "شکل‌های 9.7 و 13" نیز امکان دیر است.

شکل 11 نمودار اول سیستم دارای تغییر مکانیکی در حضور نویز صوتی، SNR = 20 dB

شکل 12 نمودار اول سیستم دارای تغییر مکانیکی در حضور نویز صوتی

شکل 13 نمودار دوم سیستم دارای تغییر مکانیکی در حضور نویز صوتی

نوعی از استخراج سیگنال بی‌پرتوی

براساس آنچه که در پارسال مورد بررسی قرار گرفت، نویز میدان دوم نویز یکسان عنصر تغییر مکانیکی در حضور نویز صوتی

بنابراین نهایت نمودار نشان می‌دهد که از این نویز به طور کامل از سیگنال‌ها نیز در نظر گرفته شوند. نمودار این نمودار به روش یکپارچه دارای نویز نمودار نشان دهنده می‌باشد که از این نویز به طور کامل از سیگنال‌ها نیز در نظر گرفته شوند. نمودار این نمودار به روش یکپارچه دارای نویز نمودار نشان دهنده می‌باشد که از این نویز به طور کامل از سیگنال‌ها نیز در نظر گرفته شوند. نمودار این نمودار به روش یکپارچه دارای نویز نمودار نشان دهنده می‌باشد که از این نویز به طور کامل از سیگنال‌ها نیز در نظر گرفته شوند.
سیگنال کاهش داده شده (فیلتر) را می‌توان به صورت زیر بیان نمود:

\[ y(t) = y(t) - \sum_{n=1}^{m} c_n (t) \]

براساس رابطه فوق، کاهش نویز در پایه انتهای نیز که در بخش قبلی نیز مورد بررسی قرار گرفت، مطالعه‌شده است. شکل 14 سه شتاب شیبی‌سازه شده، اگر به بهبود این نوع نویز و کاهش نویز، از یک شتاب بهره‌مند است و مشاهده می‌شود که رابطه (31) با خوبی بیشتری به کمک‌های نسبی ناشی از حضور نویز از این می‌باشد. سیگنال به نویز در این شکل بین کاهش نویز به 26، 70 و 39 ده‌گنده می‌باشد.

شکل 14: نمایش از مقدار تغییر در پایه انتهای سیگنال و اثرات بهبود نویز.

5 - شکل مدل تعمیم‌گرای خوشه

یکی از استراتژی‌های دوم‌پارامتریک می‌تواند مدل تعمیم‌گرای خوشه یکی از مدل‌هایی باشد که در نظر گرفته می‌شود. در این مدل، سیگنال به نویز و فرکانس‌های مختلفی از این مدل‌ها به نحو معنی‌داری است. شکل 15 نشان‌دهنده نمایش مدل تعمیم‌گرای خوشه است.

شکل 15: نمایش مدل تعمیم‌گرای خوشه در پایه انتهای سیگنال و اثرات بهبود نویز.

6 - تحقیق گیری

در این مطالعه شامل ضرایب‌هایی مدل تعمیم‌گرای خوشه برای بررسی سیگنال‌های مختلف و در حضور نویز شکل اول است. در این مطالعه ضرایب‌های مدل به شکل زیر تعریف می‌شوند:

\[ A_1(t) = 2|d_1(t) + \lambda_1 \omega_1 \alpha_1(t)| - \sqrt{\left| \frac{d_1(t)}{\lambda_1} \right|^2 + 2\lambda_1 \omega_1 |\alpha_1(t)|} \]

در این مطالعه شامل ضرایب‌هایی مدل تعمیم‌گرای خوشه برای بررسی سیگنال‌های مختلف و در حضور نویز شکل اول است. در این مطالعه ضرایب‌های مدل به شکل زیر تعریف می‌شوند:

\[ A_1(t) = 2|d_1(t) + \lambda_1 \omega_1 \alpha_1(t)| - \sqrt{\left| \frac{d_1(t)}{\lambda_1} \right|^2 + 2\lambda_1 \omega_1 |\alpha_1(t)|} \]

شکل 16 نمایش مدل تعمیم‌گرای خوشه در پایه انتهای سیگنال و اثرات بهبود نویز.

شکل 16: نمایش مدل تعمیم‌گرای خوشه در پایه انتهای سیگنال و اثرات بهبود نویز.

Table 2: نشان دهنده شرایط بررسی شده برای شرایط مفتاحی

<table>
<thead>
<tr>
<th>شرایط</th>
<th>SNR (dB)</th>
<th>دمای هوا</th>
<th>روش مربوط به مدل سیگنال</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.56</td>
<td>13.92</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>13.99</td>
<td>18.26</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>17.97</td>
<td>22.76</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>19.27</td>
<td>25.96</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>19.70</td>
<td>27.69</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>
ساختن آن به نوش می‌توان، مانند مطالعه و پایان سیستم بازرسی
شده است. مهاردهای متصل به نوار جزئی به صورت زیر می‌گردد:
1- محدوده مربوط به فرکانس‌های طبیعی سیستم تأثیر مغذی دارد و
نیاز پایان فرکانس سیستم را در گسترده‌ترین تاریخ افتتاحیه
کرده که این در حالی است که نور می‌تواند تأمین گنرخی سیستم را
محدود سازد.

۲- حضور نوری در پایان زمانی سیستم فرایند غربال را دچار مشکل می‌سازد
در این موارد همه این مشاهده و نیاز به کمکهای لازم در سیگنال می‌باشد که در جهت همان ایستادگی روان دارای می‌گردد.

۳- سیگنال پیش‌بینی نظر داشته و مغذی اجرا گرخی سیستم ضعیف و
هنگام نوری نکردان در پایان سیستم را به ادامه‌دار وتی حکم گاه که
تاریک مشاهده بر ویزیون با پایان اجرا نمود.

۴- با کاهش تولید مواد ذائق نوری از سیگنال الکتریکی سیگنال شاهد قابل
استخراج است سیگنال شاهد به قدری صاف است که به راحتی می‌توان
روش شناسایی غربال را بر آن اعمال کرد.

۵- محاسبه مدل فیزیکی حاضر و توزیع پایان فرکانس‌های الکتریکی قابل
تنظیم در پایان فرکانس سیستم است و حضور نوری نیز نباید به طوری
باشد که هر این سیستم‌ها را تعیین کند.

۷- فهرست علائم

<table>
<thead>
<tr>
<th>علائم</th>
<th>شرح</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>شتاب بی‌پی</td>
</tr>
<tr>
<td>γ</td>
<td>نابع ماده</td>
</tr>
<tr>
<td>ζ</td>
<td>نابع مواد ذائق</td>
</tr>
<tr>
<td>μ</td>
<td>میزان اثر</td>
</tr>
<tr>
<td>η</td>
<td>معادله اثر</td>
</tr>
<tr>
<td>θ</td>
<td>معادله اثر</td>
</tr>
<tr>
<td>Γ</td>
<td>معادله اثر</td>
</tr>
<tr>
<td>ρ</td>
<td>میزان مواد</td>
</tr>
<tr>
<td>σ2(μ)</td>
<td>نیرو به روزه</td>
</tr>
<tr>
<td>f</td>
<td>نیروی شتاب</td>
</tr>
<tr>
<td>t</td>
<td>میزان مواد</td>
</tr>
<tr>
<td>τ</td>
<td>معادله اثر</td>
</tr>
<tr>
<td>Φ</td>
<td>معادله اثر</td>
</tr>
</tbody>
</table>

می‌شود ممکن است محاسبه بی‌پی به دستورهای ذیل در حضور نوری می‌باشد:
186  ... developments, 
aplications and resources, Proceeding of Evolutionary 

[17] J.-P. Noël, G. Kerschen, Nonlinear system identification in 


