Geometrical method for determination of mechanical properties of particle reinforced composites

Hamed Khezzadeh*

Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
* P.O.B. 14115-143, Tehran, Iran, khezzadhe@modares.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 01 December 2015
Accepted 11 February 2016
Available Online 05 March 2016

Keywords: Particular Composites Homogenization Micromechanics Mechanical Properties Unit Cell

ABSTRACT

Research on microstructure of main engineering materials revealed that some of these materials exhibit similar microstructure patterns at different length scales. Since these patterns are replicated at different length scales the whole microstructure can be viewed as a set of periodic substructures. Homogenization technique for periodic microstructures has found many applications in simulation of composite materials by considering the geometry of fibers distribution. In this study a homogenization technique for periodic microstructures is developed. In this generalization a multi-step homogenization is being used. In each step of homogenization the geometry which is coincident with the true microstructure is produced to maintain the properties of the mechanical properties of the related cell. By using the presented method, effect of size and grading of each of the reinforcing phases and the interaction produced to maintain the properties of the mechanical properties of the related cell. By using the presented method, effect of size and grading of each of the reinforcing phases and the interaction between fibers is taken into account. The results of the presented theory are compared with the existing experimental data on the particle reinforced composites. Good agreement between the presented theory and experimental data is found.

Please cite this article using:
Fig. 1 Geometrical model of particles arrangement inside subsequent cells

1. Size Effect
2. Simple Cubic
3. Body-Centered Cubic
4. Face-Centered Cubic
5. Hexagonal Close-Packed

Fig. 1 Geometrical model of particles arrangement inside subsequent cells

1. Size Effect
2. Simple Cubic
3. Body-Centered Cubic
4. Face-Centered Cubic
5. Hexagonal Close-Packed

Downloaded from mme.modares.ac.ir at 13:57 IRDT on Tuesday May 28th 2019

\[\sigma_{ij}(x) = \begin{cases} C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] & \text{in } \Omega \\ C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] - e_{ij}(x) & \text{in } M \\ 0 & \text{in } \Gamma
\end{cases} \]

در این بخش، مسئله‌ی تغییر یافته‌ای ناشتاها با توجه به این‌که مسئله‌ی معادلات اصلی مسئله، در صورت انتخاب یک روش معکوس مورد استفاده قرار گرفته است.

\[\sigma_{ij}(x) = C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] - e_{ij}(x) \]

با استفاده از رابطه‌ی معادله اصلی، مسئله در صورت عدم وجود تغییرات ناشتا، به صورت زیر می‌باشد:

\[\sigma_{ij}(x) = C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] - e_{ij}(x) \]

در رابطه فوق، با استفاده از شرط‌های نشان داده شده در اینجا، مسئله از طریق روش معکوس بسته در دادر می‌باشد.

\[\sigma_{ij}(x) = C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] - e_{ij}(x) \]

در صورت عدم وجود تغییرات ناشتا، مسئله به صورت زیر می‌باشد:

\[\sigma_{ij}(x) = C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] - e_{ij}(x) \]

با استفاده از شرط‌های فوق، مسئله از طریق روش معکوس بسته در دادر می‌باشد.

\[\sigma_{ij}(x) = C_{ijkl}^{\text{ijkl}} [e_{ij}(x) + e_{ij}(x)] - e_{ij}(x) \]

با استفاده از شرط‌های فوق، مسئله از طریق روش معکوس بسته در دادر می‌باشد.
دروست د و کرنش ویژه مادونیکین بصورة رابطه (18) قابل تعریف است:

\[e^0 = (\mathbf{A}_0 - \mathbf{S}_0) : e^0 \]

(18)

با استفاده از نتایج فوق و با توجه به اینکه امکان کرنش دیگر نیست در جامد همک محدود با بدید برنامه نشان داده شد با خواص جامد همک محدود (\(\mathbf{C}^h\) دام)

\[\mathbf{C}^h = C^h : [(1 - V^2 - f_\mathbf{B}(\mathbf{A}_0 - \mathbf{S}_0)^{-1}]^{-1} \]

(19)

که در رابطه فوق \(V^2\) تیپور همک توسط چاه‌پیمایی در روش ایرانی نشان داده شده در مرحله زودکرنش همک و نشان دهنده دامن و خواص استاتیک رات از دامن را ردیابی کرد. مدل به 20 و (21) قابل تعریف می‌باشد.

\[\mathbf{p}^h = \mathbf{p} + \frac{f_n}{2\mu^2 + 2\mu + 1} \]

(20)

\[\mathbf{K}^h = \mathbf{K} + \frac{f_n}{2\mu^2 + 2\mu + 1} \mathbf{K}^{-1} \]

(21)

در قسمت بعد، نتایج حاصل از روابط فوق به آزمایش‌های مختلف ذرات در داخل پلیر ارسال می‌شود. نتایج رابطه (18) تولید بیش از مقداری تغییر معنی‌دار نشان می‌دهد که در خواص استاتیک همک محدود با توجه به (18) قابل تعریف می‌باشد.

\[\sigma_{ij} = \begin{cases} C_{ij,kl} \cdot D_{kl} (\mathbf{S}_{mn} - \mathbf{S}_{mn})^{1/2} \cdot \mathbf{e}^d \cdot \mathbf{e}^d & \xi \in \Omega \\ C_{ij,kl} \cdot D_{kl} (\mathbf{S}_{mn} - \mathbf{S}_{mn})^{1/2} \cdot \mathbf{e}^d \cdot \mathbf{e}^d & \xi \in M \end{cases} \]

(24)

\[D_{kl} (\mathbf{S}_{mn}) = \sum_{\xi \in \Omega} D_{kl} (\mathbf{S}_{mn}) (\mathbf{r} \cdot \mathbf{c}_\xi) \]

(25)

درست است که در برخی مدل‌ها از محدوده ذرات در داخل پلیر ارسال می‌شود. در قسمت اول نسبت به تغییر معنی‌دار ذرات در داخل پلیر ارسال می‌شود. در قسمت اول نسبت به تغییر معنی‌دار ذرات در داخل پلیر ارسال می‌شود.
در روش همگن‌سازی چند مرحله‌ای [23] یک مدل می‌تواند در نظر گرفته شود. با استفاده از این الگو، مدل و ادزه در نظر گرفته می‌شود. برای تعیین خواص هر یک از ابزارهای استخوان در هر مرحله، اعداد استخوانی از دو مرحله اولیه با استفاده از روابط ایجاد شده در زیر به دست آمده است. همچنین برای تعیین خواص هر ابزار در داخل پیش‌بینی خواص استخوانی تعیین خواهند گردید.

4- تابع حاصل برای سلول‌های ریزوستات پایه به‌نام S_{cell}

در این بخش با یک نتایج بسته در پیش‌بینی برای پیش‌بینی

MNHB منابع برای فرم‌های مختلف هیدرولیکی در تابع ریزوستات

ماده خواص مکانیکی به یک اندازه متفاوت در هر ابزار به دو دسته کنار گرفته و هر دسته ابزار شامل یک ماده و یک سلول در هر ابزار متفاوت مقدار داشته است. مقدار سلول در هر مقدار متفاوت در هر ابزار متفاوت در هر ابزار متفاوت در هر ابزار متفاوت.

شکل 2.2 دیدار دو ابزار در نتایج مختلف سلول‌ها

![Fig. 2: Particles arrangement in different cell types](image-url)

\begin{equation}
 f_{\alpha}(\theta_\alpha) =
 \frac{f_0}{1 - f_0(1 - \frac{\theta_\alpha}{\theta_\alpha}^\alpha)}
 \end{equation}

که در ابتدای فرقی \(\theta_\alpha \) و \(\alpha \) نویان نابع توزیع تجعیمی است.

نتایج حاصل از توزیع با نوع پایان داده شکل 4 نشان داده است، با بررسی این نمودار مشخص می‌گردد که نحوه توزیع حجمی ذرات

فیگ. 3 مقایسه تجعیمی آنالیزی با توزیع آزمایشگاهی

- مقایسه تجعیمی آزمایشگاهی با توزیع آزمایشگاهی

در این فرم نتایج حاصل از این نمودار با کمپوست ماده کامپوزیتی از یکین، در رهبری روش کامپوزیت با دو مرحله خاصیت مورد بررسی و مقایسه قرار گرفته. نتایج آزمایشگاهی اخباره در این شرایط با یکین رای آزمودن استریک نمایشگر توزیع ذرات در دایره رایکستر اندازه شده و مراحلگیری مشخصات اجزای مواد تشکیل دهنده ماده کامپوزیت

در جدول 1 نشان داده است.

افلین مجموعه از آزمایش‌ها در ریج [28] بر روی ماده کامپوزیت با

جنس مایلی PMMA و ذرات پوشانی بر همستانت ایجاد شده است. در این آزمایش ذرات استانتیک جدا از دمای کمپوزیت خاص را ارائه می‌دهند از اینرو با سختی، استنلی نسبت به مایلی برای این منظور استفاده شده است. برای کمک به کار رفته درای برایTEL بکس می‌باشد و یک نمونه نیز با استفاده از دو نوع

اندوز ذرات ساختمان شده است. برای شبیه‌سازی نمونه‌های با سایر کاسی دو ذرات از توزیع دو‌مرحله واحد شده است. مقایسه

نتایج دو‌مرحله 2 (همستانتی دو مرحله) استفاده شده است. مقایسه

نتایج حاصل شده با نتایج آزمایشگاهی در شکل 4 نشان داده است.

همان‌گونه که در شکل قبل ملاحظه شد، نتایج حاصل از دو-مرحله‌ای

پیامدهای جهت بررسی خواص کامپوزیت‌های توزیع ذرات با

۳ Core-Shell Rubber

شکل 4 مقایسه خواص کامپوزیت همگن شده برای اولویت توزیع تجعیمی ذرات

شکل 5 مقایسه خواص کامپوزیت همگن شده با روش همگن‌سازی چند مرحله‌ای با

نتایج آزمایشگاهی انبساط شده از [28]
جدول 1 متقابل‌های خاکی‌های یک‌خانه به‌صورت عکس دریافت کرده‌بوده‌اند که در آزمایش‌های

<table>
<thead>
<tr>
<th>مدل پلاک‌هایی</th>
<th>ضریب پوشاک فاز</th>
<th>مدل پلاک‌هایی</th>
<th>ضریب پوشاک فاز</th>
<th>مدل پلاک‌هایی</th>
<th>ضریب پوشاک فاز</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاز پراکنده</td>
<td>0.998</td>
<td>فاز پراکنده</td>
<td>0.003</td>
<td>فاز پراکنده</td>
<td>0.36</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.2599</td>
<td>فاز پراکنده</td>
<td>88.9</td>
<td>فاز پراکنده</td>
<td>0.35</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
<tr>
<td>فاز پراکنده</td>
<td>0.33</td>
<td>فاز پراکنده</td>
<td>205.8</td>
<td>فاز پراکنده</td>
<td>0.228</td>
</tr>
</tbody>
</table>

مرجع [29]

