مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بکارگیری فرآیند فورج چند جهته برای تولید تیتانیم خالص با ساختار فوق ریزدانه

نویسندگان
1 دانشکده مهندسی مواد، دانشگاه بین المللی امام خمینی (ره)، قزوین
2 دانشکده مکانیک دانشگاه مراغه، مراغه
چکیده
تیتانیم خالص تجاری (CP) بدلیل زیست‌سازگاری عالی، کاربرد‌های زیادی در بایومواد و نیز ایمپلنت‌ها دارد. مهم‌ترین نقطه ضعف تیتانیم خالص تجاری استحکام پایین‌ آن در مقایسه با دیگر آلیاژهای تیتانیم می‌باشد. یکی از روش‌هایی که به‌وسیله آن می‌توان استحکام تیتانیم را به مقدار قابل توجهی افزایش داد روش‌های تغییر شکل پلاستیک شدید از قبیل فرآیند‌ فورج چند‌گانه (MDF) می‌باشند. لذا هدف پژوهش حاضر، بهبود استحکام تیتانیم CP از طریق ریزدانه‌سازی آن به‌وسیله فرآیند‌MDF است. بدین منظور قطعات تیتانیم CP پس از 1 ساعت فرآیند آنیل در دمای 800°C، تا 6 پاس تحت فرآیند MDF در دمای محیط قرار گرفتند. بررسی‌های ریزساختاری بوسیله میکروسکوپ نوری و میکروسکوپ الکترونی روبشی مجهز به EBSD انجام گرفت. خواص مکانیکی نیز توسط آزمون‌های میکروسختی و کشش مطالعه شد. همچنین شبیه-سازی اجزای محدود با استفاده از نرم افزار آباکوس جهت پیش‌بینی توزیع کرنش فرآیند MDF انجام گرفت. نتایج بررسی‌ ریزساختار نشان داد که میانگین اندازه دانه پس از اعمال فرآیند MDF کاهش قابل توجهی می‌یابد و افزایش پاس‌های MDF باعث افزایش ریزدانه‌سازی حین فرآیند MDF می‌گردد. پس از 6 پاس فرآیند MDF میانگین اندازه دانه از 45 میکرون به 390 نانومتر کاهش می‌یابد. نتایج خواص مکانیکی نشان داد که استحکام و سختی نمونه‌ها با انجام فرآیند MDF و افزایش تعداد پاس‌های آن افزایش می‌یابند. سختی و استحکام تیتانیم CP پس از 6 پاس MDF حدود 2 برابر مقادیر متناظر آنها در نمونه آنیل شده بدست می‌آید. همچنین نتایج توزیع کرنش حاصل از شبیه‌سازی و توزیع میکروسختی نمونه‌های MDF شده نیز مطابقت خوبی نشان می‌دهند.
کلیدواژه‌ها

عنوان مقاله English

Utilization of multi directional forging for fabrication of ultrafine-grained pure titanium

نویسندگان English

iman ansarian 1
mohammad hossein shaeri 1
Mahmoud Ebrahimi 2
1 Materials Science and Engineering Department, Imam Khomeini International University (IKIU), Qazvin, Iran
2 Department of Mechanical Engineering, University of Maragheh, Maragheh, Iran.
چکیده English

Commercial pure (CP) titanium has many applications in biomaterials especially in implants due to its excellent biocompatibility. The major weakness of CP titanium is low strength compared to that of other titanium alloys. One of the methods can be used to increase the strength of CP titanium are severe plastic deformation methods such as multi directional forging (MDF). Therefore, the aim of this research is the improvement of CP titanium strength by grain refinement in MDF process. For this purpose, after one hour annealing at 800°C, the CP titanium was forged by MDF process up to six passes at ambient temperature. Microstructural studies were performed by optical microscope and scanning electron microscope equipped with EBSD. Mechanical properties were also studied by Vickers’ microhardness and tensile tests. The finite element simulation by Abaqus software was also applied to predict the strain distribution during MDF process. The results of microstructural analysis showed that the average grain size decreased significantly after the MDF process and increasing the pass numbers of MDF led to an increase in grain refinement. After six passes of the MDF process, the average grain size decreased from 45 microns to 390 nm. Mechanical properties results showed that the strength and hardness of specimens increased with MDF process and increasing the number of passes. The hardness and strength of six passes MDFed specimen was about 2 times greater than those of annealed specimen. The strain distribution results obtained from the simulation showed good agreement with experimental results of microhardness distribution.

کلیدواژه‌ها English

Multi directional forging
Commercial pure titanium
Finite element analysis
Mechanical properties
Microstructure study
[1] Y. J. Li, Y. J. Chen, J. C. Walmsley, R. H. Mathinsen, S. Dumoulin, H. J. Roven, Faceted interfacial structure of twins in Ti formed during equal channel angular pressing, Scripta Materialia,Vol. 62, No. 7, pp. 443-446, 2010.
[2] M. H. Shaeri, M. T. Salehi, S. H. Seyyedein, M. R. Abutalebi, J. K. Park, Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Materials & Design, Vol. 57, pp. 250-257, 2014.
[3] J. Liu, A. S .Khan, L. Takacs, C. S. Meredith, Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation, Plasticity, Vol. 64, No. 1, pp.151-163, 2015.
[4] R. Naseri, M. Shariati, M. Kadkhodayan, Effect of work-piece cross section on mechanical properties of commercially pure titanium produced by Equal Channel Angular Pressing, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 166-157, 2015. (in Persian فارسی(
[5] M. H. Shaeri, M. Shaeri, M. Ebrahimi, M. T. Salehi, S. H. Seyyedein, Effect of ECAP temperature on microstructure and mechanical properties of Al-ZnMg-Cu alloy, Progress in Natural Science: Materials International, Vol. 26, No. 2, pp. 182-191, 2016.
[6] M. H. Shaeri, M. Shaeri, M. T. Salehi, S. H. Seyyedein, M. R. Abutalebi, Effect of equal channel angular pressing on aging treatment of Al-7075 alloy, Progress in Natural Science: Materials International, Vol. 25, No. 2, pp. 159-168, 2015.
[7] L. Tang, C. Liu, Z. Chen, D. Ji, H. Xiao, Microstructures and tensile properties of Mg–Gd–Y–Zr alloy during multidirectional forging at 773K, Materials & Design, Vol. 50, No. 1, pp. 587-596, 2013.
[8] A. Kundu, R. Kapoor, R. Tewari, J. K. Chakravartty, Severe plastic deformation of copper using multiple compression in a channel die, Scripta Materialia, Vol. 58, No. 3, pp. 235-238, 2008.
[9] F. Akbaripanah, Y. Moradi, Superplasticty behavior of MDFed Sn-1Bi alloy determined by shear punch test, Mechanical Engineering of Tabriz University, Vol. 46, No. 4, pp. 27-32, 2016. (in Persian فارسی(
[10] F. Akbaripanah, M. A. Salavati; R. Mahmudi, The effects of extrusion and multi-directional forging (MDF) processes on microstructure, shear strength and microhardness of AM60 magnesium alloy, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 409-416, 2016. (in Persian فارسی(
[11] A. Dodangeh, M. Kazeminezhad, H. Aashuri, Severe plastic deformation of rheoforged aluminum alloy A356, Materials Science and Engineering: A, Vol. 558, No. 1, pp. 371-376, 2012.
[12] S. Nikbakht, M. Eftekhari, G. Faragi, Study of Microstructure and mechanical properties of pure commercial titanium via combination of Equal channel angular pressing and Extrusion, Modares Mechanical Engineering, Vol. 17, No. 1, pp. 266-276, 2017. (in Persian فارسی(
[13] R. Naseri, M. Kadkhodayan, M. Shariati, The investigation of spring-back of UFG commercially pure titanium in three-point bending test, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 453-461, 2017. (in Persian (فارسی
[14] M. Eftekhari, G. Faraji, O. Shapoorgan, M. Baniassadi, Experimental investigation of the effect of temperature in extrusion process of ECAPed nanostructured Titanium, Modares Mechanical Engineering, Vol. 17, No. 4, pp. 52-60, 2017. (in Persian فارسی(
[15] Y. J .Chen, Y. J. Li, J. C. Walmsley, S. Dumoulin, P. C. Skaret, H. J. Roven, Microstructure evolution of commercial pure titanium during equal channel angular pressing, Materials Science and Engineering:A, Vol. 527, No. 3, pp. 789-796, 2010.
[16] A. Fattah-alhosseini, M. K. Keshavarz, Y. Mazaheri, A. R. Ansari, M. Karimi, Strengthening mechanisms of nano-grained commercial pure titanium processed by accumulative roll bonding, Materials Science and Engineering:A, Vol. 693, No. 1, pp. 164-169, 2017.
[17] R. K. Islamgaliev, V. U. Kazyhanov, L. O. Shestakova, A. V. Sharafutdinov, R. Z. Valiev, Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion. Materials Science and Engineering:A, Vol. 493, No. 1, pp. 190-194, 2008.
[18] P. Luo, D. T. McDonald, W. Xu, S. Palanisamy, M. S. Dargusch, K. Xia,. A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing. Scripta Materialia, Vol. 66, No. 10, pp. 785-788, 2012.
[19] M. Karimi, M. R. Toroghinejad, J. Dutkiewicz, Nanostructure formation during accumulative roll bonding of commercial purity titanium, Materials Characterization, Vol. 122, No. 1, pp. 98-103, 2016.
[20] S. Semiatin, D. DeLo, V. Segal, R. Goforth, N. Frey, Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures, Metallurgical and Materials Transactions A, Vol. 30, No. 5, pp. 1425-1435, 1999.
[21] J. Xu, M. Shirooyeh, J. Wongsa, D. Shan, B. Guo, T. G. Langdon, Hardness homogeneity and micro-tensile behavior in a magnesium AZ31 alloy processed by equal-channel angular pressing. Materials Science and Engineering: A, Vol. 586, No. 1, pp. 108-114, 2013.
[22] M. Y. Alawadhi, S. Sabbaghianrad, Y. Huang, T. G. Langdon, Direct influence of recovery behaviour on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP, Materials Research and Technology, Vol. 6, No. 4, pp. 369-377, 2017.
[23] R. Arockiakumar, J. K. Park, Effect of α-precipitation on the superelastic behavior of Ti–40 wt.%Nb–0.3 wt.%O alloy processed by equal channel angular extrusion, Materials Science and Engineering A, Vol. 527, No. 1, pp. 2709–2713, 2010.
[24] S. H. Xia, J. Wang, J. T. Wang, J. Q. Liu, Improvement of room-temperature superplasticity in Zn–22 wt.%Al alloy, Materials Science and Engineering A, Vol. 493, No. 1, pp. 111–115, 2008.
[25] H. Moayeri, F. Forouzesh, M. Zamani, A. Emami, Finite Element Analysis of Engineering by Abaqus, First edition, pp. 65-68, Tehran: Danesh bonyad, 2014. (in Persian فارسی(
[26] R. I. Amaro, R. C. Martins, J. O. Seabra, N. M. Renevier, D. G. Teer, Molybdenum disulphide/titanium low friction coating for gears application, Tribology International, Vol. 38, No. 4, pp. 423-434, 2005.
[27] G. Lütjering, J. C. Williams, Titanium, 2 end Edition, pp. 17-156, Clumbus: Springer, 2003.
[28] R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, 3rd Edition, pp. 231-679, (Translated by M. R. Afzali), Tehran: Nopardazan, 2006. (in (فارسی Persian
[29] C. S. Meredith, A. S. Khan, The microstructural evolution and thermomechanical behavior of UFG Ti processed via equal channel angular pressing, Materials Processing Technology, Vol. 219, No. 1, pp. 257-270, 2015.
[30] A. Ghaderi, M. R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium, Acta Materialia, Vol. 59, No. 20, pp. 7824-7839, 2011.
[31] C. Leyens, M. Peters, Titanium and Titanium Alloys Fundamentals and Applications, pp. 5-6, Weinheim: Wiley-VCH, 2003.
[32] X. Sun, Y. Guo, Q. Wei, Y. Li, Y. S. Zhang, A comparative study on the microstructure and mechanical behavior of titanium: Ultrafine grain vs. coarse grain, Materials Science and Engineering:A, Vol. 669, No. 1, pp. 226- 245, 2016.
[33] F. Akbaripanah, F. Fereshteh-Sanaiee, R. Mahmudi, H. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Materials & Design, Vol. 43, No. 1, pp. 31-39, 2013.
[34] M. Ebrahimi, Fatigue behaviors of materials processed by planar twist extrusion, Metallurgical and Materials Transactions A, Vol. 48, No. 12, pp. 6126-6134, 2017.
[35] A. Razaghani, A. Sedghi.A, Mechanical Properties of Materials Metals and Cramics, 2 end Edition, pp. 147-200, Qazvin: jahad daneshgahi, 2013. (in (فارسی Persian
[36] P. Luo, D. McDonald, S. M. Zhu, S. Palanisamy, M. Dargusch, K. Xia, Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction, Materials Science and Engineering: A, Vol. 538, No. 1, pp. 252-258, 2012.
[37] Q. F. Zhu, L. I. Lei, C. Y. Ban, Z. H. Zhao, Y. B. Zuo, J. Z. Cui, Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature, Transactions of Nonferrous Metals Society of China, Vol. 24, No. 5, pp. 1301-1306, 2014.
[38] H. Huang, J. Zhang,. Microstructure and mechanical properties of AZ31 magnesium alloy processed by multi-directional forging at different temperatures, Materials Science and Engineering: A, Vol. 674, No. 1, pp. 52- 58, 2016.
[39] A. Razaghani, Introduction to the Principles of Dislocations and Strengthening Mechanisms, First edition, pp. 317-320, Qazvin: jahad daneshgahi, 2012. (in Persian فارسی(